首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. When collodion particles suspended in water move in an electric field they are, as a rule, negatively charged. The maximal cataphoretic P.D. between collodion particles and water is about 70 millivolts. This is only slightly more than the cataphoretic P.D. found by McTaggart to exist between gas bubbles and water (55 millivolts). Since in the latter case the P.D. is entirely due to forces inherent in the water itself, resulting possibly in an excess of OH ions in the layer of water in contact and moving with the gas bubble, it is assumed that the negative charge of the collodion particles is also chiefly due to the same cause; the collodion particles being apparently only responsible for the slight difference in maximal P.D. of water-gas and water-collodion surfaces. 2. The cataphoretic charge of collodion particles seems to be a minimum in pure water, increasing as a rule with the addition of electrolytes, especially if the cation of the electrolyte is monovalent, until a maximal P.D. is reached. A further increase in the concentration of the electrolyte depresses the P.D. again. There is little difference in the action of HCl, NaOH, and NaCl or LiCl or KCl. 3. The increase in P.D. between collodion particles and water upon the addition of electrolyte is the more rapid the higher the valency of the anion. This suggests that this increase of negative charge of the collodion particle is due to the anions of the electrolyte gathering in excess in the layer of water nearest to the collodion particles, while the adjoining aqueous layer has an excess of cations. 4. In the case of chlorides and at a pH of about 5.0 the maximal P.D. between collodion particles and water is about 70 millivolts, when the cation of the electrolyte present is monovalent (H, Li, Na, K); when the cation of the electrolyte is bivalent (Mg, Ca), the maximal P.D. is about 35 to 40 millivolts; and when the cation is trivalent (La) the maximal P.D. is lower, probably little more than 20 millivolts. 5. A reversal in the sign of charge of the collodion particles could be brought about by LaCl3 but not by acid. 6. These results on the influence of electrolytes on the cataphoretic P.D. between collodion particles and water are also of significance for the theory of electrical endosmose and anomalous osmosis through collodion membranes; since the cataphoretic P.D. is probably identical with the P.D. between water and collodion inside the pores of a collodion membrane through which the water diffuses. 7. The cataphoretic P.D. between collodion particles and water determines the stability of suspensions of collodion particles in water, since rapid precipitation occurs when this P.D. falls below a critical value of about 16 millivolts, regardless of the nature of the electrolyte by which the P.D. is depressed. No peptization effect of plurivalent anions was noticed.  相似文献   

2.
1. This paper gives measurements of the influence of various electrolytes on the cataphoretic P.D. of particles of collodion coated with gelatin, of particles of casein, and of particles of boiled egg albumin in water at different pH. The influence of the same electrolyte was about the same in all three proteins. 2. It was found that the salts can be divided into two groups according to their effect on the P.D. at the isoelectric point. The salts of the first group including salts of the type of NaCl, CaCl2, and Na2SO4 affect the P.D. of proteins at the isoelectric point but little; the second group includes salts with a trivalent or tetravalent ion such as LaCl3 or Na4Fe(CN)6. These latter salts produce a high P.D. on the isoelectric particles, LaCl3 making them positively and Na4Fe(CN)6 making them negatively charged. This difference in the action of the two groups of salts agrees with the observations on the effect of the same salts on the anomalous osmosis through collodion membranes coated with gelatin. 3. At pH 4.0 the three proteins have a positive cataphoretic charge which is increased by LaCl3 but not by NaCl or CaCl2, and which is reversed by Na4Fe(CN)6, the latter salt making the cataphoretic charge of the particles strongly negative. 4. At pH 5.8 the protein particles have a negative cataphoretic charge which is strongly increased by Na4Fe(CN)6 but practically not at all by Na2SO4 or NaCl, and which is reversed by LaCl3. the latter salt making the cataphoretic charge of the particles strongly positive. 5. The fact that electrolytes affect the cataphoretic P.D. of protein particles in the same way, no matter whether the protein is denatured egg albumin or a genuine protein like gelatin, furnishes proof that the solutions of genuine proteins such as crystalline egg albumin or gelatin are not diaphasic systems, since we shall show in a subsequent paper that proteins insoluble in water, e.g. denatured egg albumin, are precipitated when the cataphoretic P.D. falls below a certain critical value, while water-soluble proteins, e.g. genuine crystalline egg albumin or gelatin, stay in solution even if the P.D. of the particles falls below the critical P.D.  相似文献   

3.
1. Leucocytes ingest quartz particles more readily than carbon in acid solutions, and carbon more readily than quartz in alkaline solutions. 2. In the presence of acacia carbon is always preferred to quartz even in acid solutions. 3. Manganese dioxide particles are ingested by leucocytes with extraordinary rapidity as compared with manganese silicate or quartz. 4. Leucocytes are not attracted toward carbon or quartz particles but manganese dioxide exerts a distinct attraction for them. 5. Spores of Penicillium are ingested more readily than quartz. 6. Very small quartz particles, 1 micron in diameter, are not ingested as readily as larger particles of the same material. This result being contrary to the predictions of surface tension indicates that some other factor is involved in the ingestion of these small particles. 7. Measurements of the carbon electrode potentials and the cataphoretic charges on the particles have failed to supply an explanation for the varying relative rates of ingestion of carbon and quartz with varying hydrogen ion concentration.  相似文献   

4.
5.
1. When leaves of Bryophyllum calycinum are suspended in moist air in a vertical plane and sidewise, roots and shoots are formed exclusively or predominate in the notches on the lower side of the leaves. When pieces of stems of the same plant are suspended horizontally in moist air, roots develop on the lower side of the stem, with the exception of the extreme basal end where they may develop on both sides. 2. The writer has suggested in a preceding paper that this directive influence of gravity on the arrangement of the regenerating organs may be due to the combination of two factors. The first factor is gravity, which causes a slightly greater collection of sap on the lower side of these organs, and as a consequence roots develop a little more quickly on the lower than on the upper side. The second factor is of an inhibitory character inasmuch as quite generally organs which grow out first, or which grow quickly, have a tendency to retard or inhibit the growth of similar organs in other places. 3. The writer was able to prove the action of this inhibitory factor by cutting off the lower edges of leaves suspended sidewise in a vertical plane or the lower halves of stems suspended in a horizontal plane (in moist air). In this case roots developed as abundantly on the upper side of these organs as they otherwise would have developed on the lower side. 4. It was, however, still necessary to prove the idea that gravity causes sap to collect in larger quantity in the lower parts of organs. This gap is filled by the present paper in which it is shown, first, that in the leaves suspended in moist air a red pigment is formed which has a tendency to collect gradually in the lowest parts of the leaf when the latter is suspended in a vertical plane. This red pigment serves as an indicator for the distribution of sap in the leaf and thus shows directly the tendency of the sap to collect in greater abundance on the lower edge of a leaf suspended in a vertical plane. Second, it is shown that when leaves or stems of Bryophyllum are suspended, in the way described, under water instead of in moist air, roots develop on the upper side as well as on the lower side. The directive effect of gravity upon the arrangement of organs disappears in this case since the abundance of the outside water makes the effect of a slight difference in the distribution of sap between the upper and lower side a negligible factor. Third, it is shown that the dry weight of the lower half of leaves suspended sidewise for several weeks in moist air in a vertical plane is greater than that of the upper half when roots and shoots are formed on the lower side only. This indicates that material from the upper half flows into the growing organs of the lower half. No such difference between upper and lower half of leaf is found when the leaves are suspended in the same way in water and roots and shoots are formed on both sides of the leaf. 5. It is shown that when a leaf connected with a piece of stem is suspended in moist air the red pigment goes into the stem instead of collecting in the lower part of the leaf, thus supporting the view expressed in a preceding paper that the inhibitory action of the stem on the root and shoot formation in a leaf of Bryophyllum is due to the fact that the material available in the leaf for organ formation is naturally sent into the stem.  相似文献   

6.
7.
8.
9.
10.
Viscid disc adhesive of pollinaria of the orchid, Catasetum, was analyzed for sugars and amino acids by TLC. Sucrose, glucose, and fructose are predominant; two other unidentified aldoses are present. Glucosamine, or one of its derivatives, apparently also is present. Glycine and serine predominate in the protein hydrolysate, and glutamate and aspartate are in high content. The adhesive appears to be a glycoprotein.  相似文献   

11.
1. A new quantitative method of measuring phagocytosis of solid particles is described. 2. A method of calculating the chances of collision between leucocytes and quartz particles of different sizes is developed. 3. The speed with which three suspensions of different sized quartz particles should be ingested by leucocytes is predicted from the calculated chances of collision, and the prediction is verified experimentally. 4. The formula for the chances of collision is also verified by varying the speed of rotation of the tubes in which the phagocytic mixtures are incubated.  相似文献   

12.
13.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

14.
THE CHEMICAL NATURE OF KERATOHYALIN GRANULES OF THE EPIDERMIS   总被引:1,自引:2,他引:1       下载免费PDF全文
Keratohyalin granules were isolated in the native form from the epidermis of newborn rats by the use of citric acid and a detergent. The isolated granules revealed a fine granular substructure in the electron microscope similar to that seen in situ. Analyses of amino acids by automated column-chromatography showed that proline and cystine are present in large proportions whereas histidine is present in a small amount. Accordingly, it was concluded that keratohyalin represents a sulfur-rich amorphous precursor of the horny cell content, rather than a sulfur-poor side product of the keratinization process, or a unique histidine-rich protein as proposed by in situ histochemical and radioautographic studies.  相似文献   

15.
牛下丘脑酸性丙酮、甲醇提取物经SeDhadex G25、混合床树脂脱盐及高效液相色谱ODS柱分离,得到了较满意的钠泵抑制因子制备物。其生物活性测定证明,对纯化制备的家兔肾髓质外层Na~ ,K~ -ATP酶活性、人红细胞~(86)Rb摄取率、WKY大鼠肠系膜小功脉血管平滑肌细胞Na~ 外流及~3H哇巴因结合率等具有明显的抑制作用。经氨基酸组分及质谱分析,该物质属于小分子肽,分子量约为315Da。该抑制因子的意义在于作为生理状态及伴随体液容积扩张的病理状态下的钠运输调节因子,它可能与高血压时体液介导的细胞钠运输失调有关。  相似文献   

16.
17.
18.
19.
Leading off from two places on the same cell (of Nitella) with 0.001 M KCl we observe that a cut produces only a temporary negative current of injury. If we lead off with 0.001 M KCl from any cell to a neighboring cell we find that when sap comes out from the cut cell and reaches the neighboring intact cell a lasting negative "current of injury" is produced. This depends on the fact that the intact cell is in contact with sap at one point and with 0.001 M KCl at the other (this applies also to tissues composed of small cells). If we employ 0.1 M KCl in place of 0.001 M the current of injury with a single cell is positive (and is more lasting when a neighboring cell is present). Divergent results obtained with tissues and single cells may be due in part to these factors.  相似文献   

20.
采用金黄地鼠视神经切断并缝接坐骨神经的再生实验模型,玻璃体内注射IBMX或/和CPT-cAMP,荧光金逆行标记再生的RGCs结合P物质免疫荧光组化双标法,研究外周神经缝接于视神经断端能否促进P物质阳性的视网膜节细胞(RGCs)再生及IBMX或/和CPT-cAMP处理对其再生的影响。实验结果:①术后四周,对照AG组每个视网膜 再生RGCs数1329±104,双标细胞平均数为45±5,占再生RGCs总数的3.4%;②AG+IBMX组每个视网膜再生RGCs数为2099±419,再生P物质阳性节细胞平均数为119±22,占再生RGCs总数的6.55%;③AG+cAMP组每个视网膜再生RGCs数为2048±133,再生P物质阳性节细胞平均数为127±37,占再生RGCs总数的6.15%;④AG+IB-MX+cAMP组每个视网膜再生RGCs数为4370±487,再生P物质阳性节细胞平均数为339±72,占再生RGCs总数的7.98%,与对照组的差异具有统计学意义。表明成年哺乳动物P物质阳性RGCs能再生,玻璃体内注射IBMX或/和CPT-cAMP可以促进该类RGCs再生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号