首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes of the chalcone synthase (CHS) superfamily catalyze the production of a variety of secondary metabolites in bacteria, fungi and plants. Some of these metabolites have played important roles during the early evolution of land plants by providing protection from various environmental assaults including UV irradiation. The genome of the moss, Physcomitrella patens, contains at least 17 putative CHS superfamily genes. Three of these genes (PpCHS2b, PpCHS3 and PpCHS5) exist in multiple copies and all have corresponding ESTs. PpCHS11 and probably also PpCHS9 encode non-CHS enzymes, while PpCHS10 appears to be an ortholog of plant genes encoding anther-specific CHS-like enzymes. It was inferred from the genomic locations of genes comprising it that the moss CHS superfamily expanded through tandem and segmental duplication events. Inferred exon–intron architectures and results from phylogenetic analysis of representative CHS superfamily genes of P. patens and other plants showed that intron gain and loss occurred several times during evolution of this gene superfamily. A high proportion of P. patens CHS genes (7 of 14 genes for which the full sequence is known and probably 3 additional genes) are intronless, prompting speculation that CHS gene duplication via retrotransposition has occurred at least twice in the moss lineage. Analyses of sequence similarities, catalytic motifs and EST data indicated that a surprisingly large number (as many as 13) of the moss CHS superfamily genes probably encode active CHS. EST distribution data and different light responsiveness observed with selected genes provide evidence for their differential regulation. Observed diversity within the moss CHS superfamily and amenability to gene manipulation make Physcomitrella a highly suitable model system for studying expansion and functional diversification of the plant CHS superfamily of genes.  相似文献   

2.
Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollenin biosynthesis genes. We analyzed available P.patens expressed sequence tag (EST) data for putative moss orthologs of the Arabidopsis genes of sporopollenin biosynthesis and studied the enzymatic properties and reaction mechanism of recombinant PpASCL, the P.patens ortholog of Arabidopsis PKSA. We also generated structure models of PpASCL and Arabidopsis PKSA to study their substrate specificity. Physcomitrella patens orthologs of Arabidopsis genes for sporopollenin biosynthesis were found to be expressed in the sporophyte generation. Similarly to Arabidopsis PKSA, PpASCL condenses hydroxy fatty acyl-CoA esters with malonyl-CoA and produces hydroxyalkyl α-pyrones that probably serve as building blocks of sporopollenin. The ASCL-specific set of Gly-Gly-Ala residues predicted by the models to be located at the floor of the putative active site is proposed to serve as the opening of an acyl-binding tunnel in ASCL. These results suggest that ASCL functions together with other sporophyte-specific enzymes to provide polyhydroxylated precursors of sporopollenin in a pathway common to land plants.  相似文献   

3.
Hattori M  Hasebe M  Sugita M 《Gene》2004,343(2):305-311
A large gene family encoding proteins with a pentatricopeptide repeat (PPR) motif exists in flowering plants but not in algae, fungi, or animals. This suggests that PPR protein genes expanded vastly during the evolution of the land plants. To investigate this possibility, we analysed PPR protein genes in the basal land plant, the moss Physcomitrella patens. An extensive survey of the Physcomitrella expressed sequence tag (EST) databases revealed 36 ESTs encoding PPR proteins. This indicates that a large gene family of PPR proteins originated before the divergence of the vascular plant and moss lineages. We also characterized five full-length cDNAs encoding PPR proteins, designated PPR513-10, PPR566-6, PPR868-14, PPR986-12, and PPR423-6. Intracellular localization analysis demonstrated two PPR proteins in chloroplasts (cp), whereas the cellular localization of the other three PPR proteins is unclear. The genes of the cp-localized PPR513-10 and PPR566-6 were expressed differentially in protonemata grown under different light-dark conditions, suggesting they have distinctive functions in cp. This is the first report and analysis of genes encoding PPR proteins in bryophytes.  相似文献   

4.
Three MADS-box cDNA clones and two corresponding genomic sequences (gDNAs) have been isolated from the bryophyte Physcomitrella patens and sequenced. Our findings indicate that the genes may be expressed in a tissue- or age-specific manner, and that expression of one of them is regulated by an alternative splicing mechanism. Conceptual translation of the clones reveals that the encoded MADS-domain proteins have the typical plant-domain pattern (MIKC). Additionally, there is a high degree of conservation of intron number and positions between angiosperm MADS-box genes and the moss loci. These observations confirm the homology of moss and higher plant MADS-box genes. We conclude that the MIKC pattern evolved in MADS-box genes after the separation of the plant lineage from that of fungi and animals, and that it must have been present in the common ancestor of mosses, ferns and seed plants. Therefore it evolved at least 400 million yr ago. Phylogenetic analysis of a large subset of the sequenced plant MADS-box genes, incorporating those from P. patens , indicates that the bryophyte genes are not orthologues of spermatophyte genes belonging to any of the well recognized higher plant gene subfamilies. This conclusion accords well with reports that the known fern MADS-box genes also comprise subfamilies distinct from those of higher plants. Therefore we tentatively propose that the gene duplication and diversification events that created the MADS-box gene subfamilies, discernible in extant angiosperm and other spermatophyte groups, occurred after separation of the moss and fern lineages from the lineage which produced the higher plants.  相似文献   

5.
A chalcone synthase (CHS) gene was cloned from Ginkgo biloba for the first time and it was also the first cloned gene involved in flavonoids metabolic pathway in G. biloba. The full-length cDNA of G. biloba CHS (designated as Gbchs) was 1608bp with poly(A) tailing and it contained a 1173bp open reading frame (ORF) encoding a 391 amino acid protein. Gbchs was found to have extensive homology with those of other plant chs genes via multiple alignments. The active sites of the CoA binding, coumaroyl pocket and cyclization pocket in CHS protein of Medicago sativa were also found in GbCHS. Molecular modeling of GbCHS indicated that the three-dimensional structure of GbCHS strongly resembled that of M. sativa (MsCHS2), implying GbCHS may have similar functions with MsCHS2. Phylogenetic tree analysis revealed that GbCHS had closer relationship with CHSs from gymnosperm plants than from other plants. Gbchs is a useful tool to study the regulation of flavonoids metabolism in G. biloba.  相似文献   

6.
7.
Chalcone synthases (CHSs) and acridone synthases (ACSs) belong to the superfamily of type III polyketide synthases (PKSs) and condense the starter substrate 4-coumaroyl-CoA or N-methylanthraniloyl-CoA with three malonyl-CoAs to produce flavonoids and acridone alkaloids, respectively. ACSs which have been cloned exclusively from Ruta graveolens share about 75-85% polypeptide sequence homology with CHSs from other plant families, while 90% similarity was observed with CHSs from Rutaceae, i.e., R. graveolens, Citrus sinensis and Dictamnus albus. CHSs cloned from many plants do not accept N-methylanthraniloyl-CoA as a starter substrate, whereas ACSs were shown to possess some side activity with 4-coumaroyl-CoA. The transformation of an ACS to a functional CHS with 10% residual ACS activity was accomplished previously by substitution of three amino acids through the corresponding residues from Ruta-CHS1 (Ser132Thr, Ala133Ser and Val265Phe). Therefore, the reverse triple mutation of Ruta-CHS1 (mutant R2) was generated, which affected only insignificantly the CHS activity and did not confer ACS activity. However, competitive inhibition of CHS activity by N-methylanthraniloyl-CoA was observed for the mutant in contrast to wild-type CHSs. Homology modeling of ACS2 with docking of 1,3-dihydroxy-N-methylacridone suggested that the starter substrates for CHS or ACS reaction are placed in different topographies in the active site pocket. Additional site specific substitutions (Asp205Pro/Thr206Asp/His207Ala or Arg60Thr and Val100Ala/Gly218Ala, respectively) diminished the CHS activity to 75-50% of the wild-type CHS1 without promoting ACS activity. The results suggest that conformational changes in the periphery beyond the active site cavity volumes determine the product formation by ACSs vs. CHSs in R. graveolens. It is likely that ACS has evolved from CHS, but the sole enlargement of the active site pocket as in CHS1 mutant R2 is insufficient to explain this process.  相似文献   

8.
9.
10.
A gene encoding a novel fifth type of major intrinsic protein (MIP) in plants has been identified in the moss Physcomitrella patens. Phylogenetic analyses show that this protein, GlpF-like intrinsic protein (GIP1;1), is closely related to a subclass of glycerol transporters in bacteria that in addition to glycerol are highly permeable to water. A likely explanation of the occurrence of this bacterial-like MIP in P. patens is horizontal gene transfer. The expressed P. patens GIP1;1 gene contains five introns and encodes a unique C-loop extension of approximately 110 amino acid residues that has no obvious similarity with any other known protein. Based on alignments and structural comparisons with other MIPs, GIP1;1 is suggested to have retained the permeability for glycerol but not for water. Studies on heterologously expressed GIP1;1 in Xenopus laevis oocytes confirm the predicted substrate specificity. Interestingly, proteins of one of the plant-specific subgroups of MIPs, the NOD26-like intrinsic proteins, are also facilitating the transport of glycerol and have previously been suggested to have evolved from a horizontally transferred bacterial gene. Further studies on localization and searches for GIP1;1 homologs in other plants will clarify the function and significance of this new plant MIP.  相似文献   

11.
Brun F  Gonneau M  Doutriaux MP  Laloue M  Nogué F 《Biochimie》2001,83(11-12):1003-1008
In the moss Physcomitrella patens integrative transformants from homologous recombination are obtained at an efficiency comparable to that found for yeast. This property, unique in the plant kingdom, allows the knockout of specific genes. It also makes the moss a convenient model to study the regulation of homologous recombination in plants. We used degenerate oligonucleotides designed from AtMSH2 from Arabidopsis thaliana and other known MutS homologues to isolate the P. patens MSH2 (PpMSH2) cDNA. The deduced sequence of the PpMSH2 protein is respectively 60.8% and 59.6% identical to the maize and A. thaliana MSH2. Phylogenic studies show that PpMSH2 is closely related to the group of plant MSH2 proteins. Southern analysis reveals that the gene exists as a single copy in the P. patens genome.  相似文献   

12.
13.
利用PCR与TAlL-PCR方法,从半月苔(Lunularia cructata(L.)Dum.ex Lindb)中获得了一段长约l 000 bp的基因片段,它与已知的CHS基因在核苷酸水平上的相似性大于56%,在氨基酸水平上的相似性大于60%,所推断的氨基酸序列中酶反应的4个催化位点与已知晶体结构的紫花苜蓿MCHS2A上的催化位点相同,首次证明了苔类植物中可能存在类CHS基因,将CHS基因的起源时间推到苔藓类植物出现之前.以该序列和两种蕨类植物(Psilotumnudum(L.)Griseb.和Equisetum arvense L.)的CHS序列作为外类群,应用邻接法、最大简约法和最大似然法分别构建了被子植物的CHS的分子系统树.结果表明,大部分科中的CHS分布在不同的分支上,而十字花科、可科和禾本科各自聚成一个单系类群.以邻接树为依据,对茄科、旋花科和菊科的CHS基因进行了相对碱基替换速率的检测,发现这三个科内或科间序列的替换速率不一致.被子植物的CHS基因在基因拷贝数目、碱基替换速率以及重复/丢失事件的发生上都存在较大的差异,这种差异可能与被子植物的生活史、生活环境、花的特性以及对外界的防御系统等的多样性相关.  相似文献   

14.
Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.  相似文献   

15.
Recently, the moss Physcomitrella patens was established as a versatile tool in plant functional genomics. Mosses represent the oldest living clade of land plants, separated by approximately 450 million years of evolution from crop plants. Consequently, mosses contain metabolites and genes not known from these seed plants. In Physcomitrella, nuclear genes can be targeted by homologous recombination as efficiently as in yeast, allowing reverse genetics approaches in plants at high-throughput levels for the first time. Comprehensive expressed sequence tag databases gave new insights into the levels of diversity in land plants which are now ready to be exploited in plant biotechnology. In forward genetics screens, saturated tagged mutant collections help to unravel novel gene - function relationships. Additionally, proteomics tools are at hand to analyse subcellular proteomes, as well as the phosphoproteome, as the core of eukaryotic signal transduction. Moreover, specifically designed Physcomitrella strains can produce human therapeutic proteins safely and cost-effectively in bioreactors.  相似文献   

16.
17.
Mapping of the Physcomitrella patens proteome   总被引:2,自引:0,他引:2  
The moss Physcomitrella patens is unique among land plants due to the high rate of homologous recombination in its nuclear DNA. The feasibility of gene targeting makes Physcomitrella an unrivalled model organism in the field of plant functional genomics. To further extend the potentialities of this seed-less plant we aimed at exploring the P. patens proteome. Experimental conditions had to be adopted to meet the special requirements connected to the investigations of this moss. Here we describe the identification of 306 proteins from the protonema of Physcomitrella. Proteins were separated by two dimensional electrophoresis, excised form the gel and analysed by means of mass spectrometry. This reference map will lay the basis for further profound studies in the field of Physcomitrella proteomics.  相似文献   

18.
RNA interference in the moss Physcomitrella patens   总被引:8,自引:0,他引:8       下载免费PDF全文
The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from related genes. However, RNA interference (RNAi) can provide mutants for both of these situations. We show that RNAi disrupts gene expression in P. patens, adding a significant tool for the study of plant gene function. To assay for RNAi in moss, we constructed a line (NLS-4) expressing a nuclearly localized green fluorescent protein (GFP):beta-glucuronidase (GUS) fusion reporter protein. We targeted the reporter protein with two RNAi constructs, GUS-RNAi and GFP-RNAi, expressed transiently by particle bombardment. Transformed protonemal cells are marked by cobombardment with dsRed2, which diffuses between the nucleus and cytoplasm. Cells transformed with control constructs have nuclear/cytoplasmic red fluorescence and nuclear green fluorescence. In cells transformed with GUS-RNAi or GFP-RNAi constructs, the nuclear green fluorescence was reduced on average 9-fold as soon as 48 h after transformation. Moreover, isolated lines of NLS-4 stably transformed with GUS-RNAi construct have silenced nuclear GFP, indicating that RNAi is propagated stably. Thus, RNAi adds a powerful tool for functional analysis of plant genes in moss.  相似文献   

19.
Fungal chitin synthases (CHSs) form fibers of the cell wall and are crucial for substrate invasion and pathogenicity. Filamentous fungi contain up to 10 CHSs, which might reflect redundant functions or the complex biology of these fungi. Here, we investigate the complete repertoire of eight CHSs in the dimorphic plant pathogen Ustilago maydis. We demonstrate that all CHSs are expressed in yeast cells and hyphae. Green fluorescent protein (GFP) fusions to all CHSs localize to septa, whereas Chs5-GFP, Chs6-GFP, Chs7-yellow fluorescent protein (YFP), and Myosin chitin synthase1 (Mcs1)-YFP were found at growth regions of yeast-like cells and hyphae, indicating that they participate in tip growth. However, only the class IV CHS genes chs7 and chs5 are crucial for shaping yeast cells and hyphae ex planta. Although most CHS mutants were attenuated in plant pathogenicity, Deltachs6, Deltachs7, and Deltamcs1 mutants were drastically reduced in virulence. Deltamcs1 showed no morphological defects in hyphae, but Mcs1 became essential during invasion of the plant epidermis. Deltamcs1 hyphae entered the plant but immediately lost growth polarity and formed large aggregates of spherical cells. Our data show that the polar class IV CHSs are essential for morphogenesis ex planta, whereas the class V myosin-CHS is essential during plant infection.  相似文献   

20.
CHS基因起源初探及其在被子植物中的进化分析   总被引:6,自引:0,他引:6  
利用PCR与TAIL-PCR方法,从半月苔(Lunulariacruciata(L.)Dum.exLindb.)中获得了一段长约1000bp的基因片段,它与已知的CHS基因在核苷酸水平上的相似性大于56%,在氨基酸水平上的相似性大于60%,所推断的氨基酸序列中酶反应的4个催化位点与已知晶体结构的紫花苜蓿MCHS2A上的催化位点相同,首次证明了苔类植物中可能存在类CHS基因,将CHS基因的起源时间推到苔藓类植物出现之前。以该序列和两种蕨类植物(Psilotumnudum(L.)Griseb.和EquisetumarvenseL.)的CHS序列作为外类群,应用邻接法、最大简约法和最大似然法分别构建了被子植物的CHS的分子系统树。结果表明,大部分科中的CHS分布在不同的分支上,而十字花科、豆科和禾本科各自聚成一个单系类群。以邻接树为依据,对茄科、旋花科和菊科的CHS基因进行了相对碱基替换速率的检测,发现这三个科内或科间序列的替换速率不一致。被子植物的CHS基因在基因拷贝数目、碱基替换速率以及重复/丢失事件的发生上都存在较大的差异,这种差异可能与被子植物的生活史、生活环境、花的特性以及对外界的防御系统等的多样性相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号