首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of DNA mismatch repair due to mutation or diminished expression of the MLH1 gene is associated with genome instability and cancer. In this study, we used a yeast model system to examine three circumstances relevant to modulation of MLH1 function. First, overexpression of wild-type MLH1 was found to cause a strong elevation of mutation rates at three different loci, similar to the mutator effect of MLH1 gene inactivation. Second, haploid yeast strains with any of six mlh1 missense mutations that mimic germ line mutations found in human cancer patients displayed a strong mutator phenotype consistent with loss of mismatch repair function. Five of these mutations affect amino acids that are homologous to residues suggested by recent crystal structure and biochemical analysis of Escherichia coli MutL to participate in ATP binding and hydrolysis. Finally, using a highly sensitive reporter gene, we detected a mutator phenotype of diploid yeast strains that are heterozygous for mlh1 mutations. Evidence suggesting that this mutator effect results not from reduced mismatch repair in the MLH1/mlh1 cells but rather from loss of the wild-type MLH1 allele in a fraction of cells is presented. Exposure to bleomycin or to UV irradiation strongly enhanced mutagenesis in the heterozygous strain but had little effect on the mutation rate in the wild-type strain. This damage-induced hypermutability may be relevant to cancer in humans with germ line mutations in only one MLH1 allele.  相似文献   

2.
Nishant KT  Plys AJ  Alani E 《Genetics》2008,179(2):747-755
Interference-dependent crossing over in yeast and mammalian meioses involves the mismatch repair protein homologs MSH4-MSH5 and MLH1-MLH3. The MLH3 protein contains a highly conserved metal-binding motif DQHA(X)(2)E(X)(4)E that is found in a subset of MLH proteins predicted to have endonuclease activities (Kadyrov et al. 2006). Mutations within this motif in human PMS2 and Saccharomyces cerevisiae PMS1 disrupted the endonuclease and mismatch repair activities of MLH1-PMS2 and MLH1-PMS1, respectively (Kadyrov et al. 2006, 2007; Erdeniz et al. 2007). As a first step in determining whether such an activity is required during meiosis, we made mutations in the MLH3 putative endonuclease domain motif (-D523N, -E529K) and found that single and double mutations conferred mlh3-null-like defects with respect to meiotic spore viability and crossing over. Yeast two-hybrid and chromatography analyses showed that the interaction between MLH1 and mlh3-D523N was maintained, suggesting that the mlh3-D523N mutation did not disrupt the stability of MLH3. The mlh3-D523N mutant also displayed a mutator phenotype in vegetative growth that was similar to mlh3Delta. Overexpression of this allele conferred a dominant-negative phenotype with respect to mismatch repair. These studies suggest that the putative endonuclease domain of MLH3 plays an important role in facilitating mismatch repair and meiotic crossing over.  相似文献   

3.
We have identified a new Saccharomyces cerevisiae gene, MLH1 (mutL homolog), that encodes a predicted protein product with sequence similarity to DNA mismatch repair proteins of bacteria (MutL and HexB) and S. cerevisiae yeast (PMS1). Disruption of the MLH1 gene results in elevated spontaneous mutation rates during vegetative growth as measured by forward mutation to canavanine resistance and reversion of the hom3-10 allele. Additionally, the mlh1 delta mutant displays a dramatic increase in the instability of simple sequence repeats, i.e., (GT)n (M. Strand, T. A. Prolla, R. M. Liskay, and T. D. Petes, Nature [London] 365:274-276, 1993). Meiotic studies indicate that disruption of the MLH1 gene in diploid strains causes increased spore lethality, presumably due to the accumulation of recessive lethal mutations, and increased postmeiotic segregation at each of four loci, the latter being indicative of inefficient repair of heteroduplex DNA generated during genetic recombination. mlh1 delta mutants, which should represent the null phenotype, show the same mutator and meiotic phenotypes as isogenic pms1 delta mutants. Interestingly, mutator and meiotic phenotypes of the mlh1 delta pms1 delta double mutant are indistinguishable from those of the mlh1 delta and pms1 delta single mutants. On the basis of our data, we suggest that in contrast to Escherichia coli, there are two MutL/HexB-like proteins in S. cerevisiae and that each is a required component of the same DNA mismatch repair pathway.  相似文献   

4.
The mismatch repair (MMR) system is critical not only for the repair of DNA replication errors, but also for the regulation of mitotic and meiotic recombination processes. In a manner analogous to its ability to remove replication errors, the MMR system can remove mismatches in heteroduplex recombination intermediates to generate gene conversion events. Alternatively, such mismatches can trigger an MMR-dependent antirecombination activity that blocks the completion of recombination, thereby limiting interactions between diverged sequences. In Saccharomyces cerevisiae, the MMR proteins Msh3, Msh6, and Mlh1 interact with proliferating cell nuclear antigen (PCNA), and mutations that disrupt these interactions result in a mutator phenotype. In addition, some mutations in the PCNA-encoding POL30 gene increase mutation rates in an MMR-dependent manner. In the current study, pol30, mlh1, and msh6 mutants were used to examine whether MMR-PCNA interactions are similarly important during mitotic and meiotic recombination. We find that MMR-PCNA interactions are important for repairing mismatches formed during meiotic recombination, but play only a relatively minor role in regulating the fidelity of mitotic recombination.  相似文献   

5.
Sokolsky T  Alani E 《Genetics》2000,155(2):589-599
In Saccharomyces cerevisiae, Msh2p, a central component in mismatch repair, forms a heterodimer with Msh3p to repair small insertion/deletion mismatches and with Msh6p to repair base pair mismatches and single-nucleotide insertion/deletion mismatches. In haploids, a msh2Delta mutation is synthetically lethal with pol3-01, a mutation in the Poldelta proofreading exonuclease. Six conditional alleles of msh2 were identified as those that conferred viability in pol3-01 strains at 26 degrees but not at 35 degrees. DNA sequencing revealed that mutations in several of the msh2(ts) alleles are located in regions with previously unidentified functions. The conditional inviability of two mutants, msh2-L560S pol3-01 and msh2-L910P pol3-01, was suppressed by overexpression of EXO1 and MSH6, respectively. Partial suppression was also observed for the temperature-sensitive mutator phenotype exhibited by msh2-L560S and msh2-L910P strains in the lys2-Bgl reversion assay. High-copy plasmids bearing mutations in the conserved EXO1 nuclease domain were unable to suppress msh2-L560S pol3-01 conditional lethality. These results, in combination with a genetic analysis of msh6Delta pol3-01 and msh3Delta pol3-01 strains, suggest that the activity of the Msh2p-Msh6p heterodimer is important for viability in the presence of the pol3-01 mutation and that Exo1p plays a catalytic role in Msh2p-mediated mismatch repair.  相似文献   

6.
EXO1 interacts with MSH2 and MLH1 and has been proposed to be a redundant exonuclease that functions in mismatch repair (MMR). To better understand the role of EXO1 in mismatch repair, a genetic screen was performed to identify mutations that increase the mutation rates caused by weak mutator mutations such as exo1Delta and pms1-A130V mutations. In a screen starting with an exo1 mutation, exo1-dependent mutator mutations were obtained in MLH1, PMS1, MSH2, MSH3, POL30 (PCNA), POL32, and RNR1, whereas starting with the weak pms1 allele pms1-A130V, pms1-dependent mutator mutations were identified in MLH1, MSH2, MSH3, MSH6, and EXO1. These mutations only cause weak MMR defects as single mutants but cause strong MMR defects when combined with each other. Most of the mutations obtained caused amino acid substitutions in MLH1 or PMS1, and these clustered in either the ATP-binding region or the MLH1-PMS1 interaction regions of these proteins. The mutations showed two other types of interactions: specific pairs of mutations showed unlinked noncomplementation in diploid strains, and the defect caused by pairs of mutations could be suppressed by high-copy-number expression of a third gene, an effect that showed allele and overexpressed gene specificity. These results support a model in which EXO1 plays a structural role in MMR and stabilizes multiprotein complexes containing a number of MMR proteins. A similar role is proposed for PCNA based on the data presented.  相似文献   

7.
DNA mismatch repair (MMR) is the process by which incorrectly paired DNA nucleotides are recognized and repaired. A germline mutation in one of the genes involved in the process may be responsible for a dominantly inherited cancer syndrome, hereditary nonpolyposis colon cancer. Cancer progression in predisposed individuals results from the somatic inactivation of the normal copy of the MMR gene, leading to a mutator phenotype affecting preferentially repeat sequences (microsatellite instability, MSI). Recently, we identified children with a constitutional deficiency of MMR activity attributable to a mutation in the h MLH1 gene. These children exhibited a constitutional genetic instability associated with clinical features of de novo neurofibromatosis type 1 (NF1) and early onset of extracolonic cancer. Based on these observations, we hypothesized that somatic NF1 gene mutation was a frequent and possibly early event in MMR-deficient cells. To test this hypothesis, we screened for NF1 mutations in cancer cells. Genetic alterations were identified in five out of ten tumor cell lines with MSI, whereas five MMR-proficient tumor cell lines expressed a wild-type NF1 gene. Somatic NF1 mutations were also detected in two primary tumors exhibiting an MSI phenotype. Finally, a 35-bp deletion in the murine Nf1 coding region was identified in mlh1-/- mouse embryonic fibroblasts. These observations demonstrate that the NF1 gene is a mutational target of MMR deficiency and suggest that its inactivation is an important step of the malignant progression of MMR-deficient cells.  相似文献   

8.
In eukaryotic cells, DNA mismatch repair is initiated by a conserved family of MutS (Msh) and MutL (Mlh) homolog proteins. Mlh1 is unique among Mlh proteins because it is required in mismatch repair and for wild-type levels of crossing over during meiosis. In this study, 60 new alleles of MLH1 were examined for defects in vegetative and meiotic mismatch repair as well as in meiotic crossing over. Four alleles predicted to disrupt the Mlh1p ATPase activity conferred defects in all functions assayed. Three mutations, mlh1-2, -29, and -31, caused defects in mismatch repair during vegetative growth but allowed nearly wild-type levels of meiotic crossing over and spore viability. Surprisingly, these mutants did not accumulate high levels of postmeiotic segregation at the ARG4 recombination hotspot. In biochemical assays, Pms1p failed to copurify with mlh1-2, and two-hybrid studies indicated that this allele did not interact with Pms1p and Mlh3p but maintained wild-type interactions with Exo1p and Sgs1p. mlh1-29 and mlh1-31 did not alter the ability of Mlh1p-Pms1p to form a ternary complex with a mismatch substrate and Msh2p-Msh6p, suggesting that the region mutated in these alleles could be responsible for signaling events that take place after ternary complex formation. These results indicate that mismatches formed during genetic recombination are processed differently than during replication and that, compared to mismatch repair functions, the meiotic crossing-over role of MLH1 appears to be more resistant to mutagenesis, perhaps indicating a structural role for Mlh1p during crossing over.  相似文献   

9.
The DNA mismatch repair (MMR) system is a major DNA repair pathway whose function is critical for the correction of DNA biosynthetic errors. MMR is initiated by the binding of MutS proteins to mismatches and unpaired nucleotides followed by the recruitment of MutL proteins. The major MutL activity in eukaryotes is performed by MutLα, the heterocomplex of MLH1-PMS1 in yeast and plants and MLH1-PMS2 in humans. We here report the effect the expression of Arabidopsis PMS1 protein exerts on Saccharomyces cerevisiae genomic stability. A strain carrying specific microsatellite instability reporter systems was chosen for the study. The plant protein failed to complement the hypermutator phenotype of a pms1 deficient strain but increased approximately 14-fold and 2,000-fold the mutation rates of his7-2 and lys2::InsE-A 14 loci of MMR proficient strains when compared to wild-type strains, respectively. Overexpressing AtMLH1 in the AtPMS1-overproducing strain generated an increase in mutation rate comparable to that of AtPMS1 expression alone. Deletion of the C-terminal residues implicated in protein–protein interaction and including the putative endonuclease sequence of AtPMS1 completely eliminated the mutator phenotype. Taken together, these results indicate that the plant proteins affect yeast genomic stability, very possibly altering protein–protein interactions that are necessary to complete repair.  相似文献   

10.
A number of studies have suggested a role for proliferating cell nuclear antigen (PCNA) in DNA mismatch repair (MMR). However, the majority of mutations in the POL30 gene encoding PCNA that cause MMR defects also cause replication and other repair defects that contribute to the increased mutation rate caused by these mutations. Here, 20 new pol30 mutants were identified and screened for MMR and other defects, resulting in the identification of two mutations, pol30-201 and pol30-204, that appear to cause MMR defects but little if any other defects. The pol30-204 mutation altered an amino acid (C81R) in the monomer-monomer interface region and resulted in a partial general MMR defect and a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation altered an amino acid (C22Y) located on the surface of the PCNA trimer that slides over the DNA but did not cause a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation caused an intermediate mutator phenotype. However, the pol30-201 mutation caused almost a complete defect in the repair of AC and GT mispairs and only a small defect in the repair of a "+T" insertion, an effect similar to that caused by an msh6Delta mutation, indicating that pol30-201 primarily effects MSH6-dependent MMR. The chromosomal double mutant msh3-FF>AA msh6-FF>AA eliminating the conserved FF residues of the PCNA interacting motif of these proteins caused a small (<10%) defect in MMR but showed synergistic interactions with mutations in POL30, indicating that the FF>AA substitution may not eliminate PCNA interactions in vivo. These results indicate that the interaction between PCNA and MMR proteins is more complex than was previously appreciated.  相似文献   

11.
Over the course of thousands of generations of growth in a glucose-limited environment, 3 of 12 experimental populations of Escherichia coli spontaneously and independently evolved greatly increased mutation rates. In two of the populations, the mutations responsible for this increased mutation rate lie in the same region of the mismatch repair gene mutL. In this region, a 6-bp repeat is present in three copies in the gene of the wild-type ancestor of the experimental populations but is present in four copies in one of the experimental populations and two copies in the other. These in-frame mutations either add or delete the amino acid sequence LA in the MutL protein. We determined that the replacement of the wild-type sequence with either of these mutations was sufficient to increase the mutation rate of the wild-type strain to a level comparable to that of the mutator strains. Complementation of strains bearing the mutator mutations with wild-type copies of either mutL or the mismatch repair gene uvrD rescued the wild-type mutation rate. The position of the mutator mutations-in the region of MutL known as the ATP lid-suggests a possible deficiency in MutL's ATPase activity as the cause of the mutator phenotype. The similarity of the two mutator mutations (despite the independent evolutionary histories of the populations that gave rise to them) leads to a discussion of the potential adaptive role of DNA repeats.  相似文献   

12.
We have recently described the presence of a high proportion of Pseudomonas aeruginosa isolates (20%) with an increased mutation frequency (mutators) in the lungs of cystic fibrosis (CF) patients. In four out of 11 independent P. aeruginosa strains, the high mutation frequency was found to be complemented with the wild-type mutS gene from P. aeruginosa PAO1. Here, we report the cloning and sequencing of two additional P. aeruginosa mismatch repair genes and the characterization, by complementation of deficient strains, of these two putative P. aeruginosa mismatch repair genes (mutL and uvrD). We also describe the alterations in the mutS, mutL and uvrD genes responsible for the mutator phenotype of hypermutable P. aeruginosa strains isolated from CF patients. Seven out of the 11 mutator strains were found to be defective in the MMR system (four mutS, two mutL and one uvrD). In four cases (three mutS and one mutL), the genes contained frameshift mutations. The fourth mutS strain showed a 3.3 kb insertion after the 10th nucleotide of the mutS gene, and a 54 nucleotide deletion between two eight nucleotide direct repeats. This deletion, involving domain II of MutS, was found to be the main one responsible for mutS inactivation. The second mutL strain presented a K310M mutation, equivalent to K307 in Escherichia coli MutL, a residue known to be essential for its ATPase activity. Finally, the uvrD strain had three amino acid substitutions within the conserved ATP binding site of the deduced UvrD polypeptide, showing defective mismatch repair activity. Interestingly, cells carrying this mutant allele exhibited a fully active UvrABC-mediated excision repair. The results shown here indicate that the putative P. aeruginosa mutS, mutL and uvrD genes are mutator genes and that their alteration results in a mutator phenotype.  相似文献   

13.
Microsatellite instability (MSI) is regarded as reflecting defective DNA mismatch repair (MMR). MMR defects lead to an increase in point mutations, as well as repeat instability, on the genome. However, despite the highly unstable microsatellites, base substitutions in representative oncogenes or tumor suppressors are extremely infrequent in MSI-positive tumors. Recently, the heterogeneity in MSI-positive colorectal tumors is pointed out, and the 'hereditary' and 'sporadic settings' are proposed. Particularly in the former, base substitution mutations in KRAS are regarded as relatively frequent. We sequenced the KRAS gene in a panel of 76 human colorectal carcinomas in which the MSI status has been determined. KRAS mutations were detected in 22 tumors (28.9%). Intriguingly, all of the KRAS-mutant MSI-H (high) tumors harbored sequence alterations in an essential MMR gene, MLH1, which implies that KRAS mutation more frequently and almost exclusively occurs in MMR gene-mutant MSI-H tumors. Furthermore, in contrast with the prevailing viewpoint, some of these tumors are derived from sporadic colorectal cancer patients. The tight connection between MMR gene mutation and KRAS mutation may suggest previously unrecognized complexities in the relationship between MSI and the mutator phenotype derived from defective MMR.  相似文献   

14.
Gutiérrez PJ  Wang TS 《Genetics》2003,165(1):65-81
Mutations of chromosome replication genes can be one of the early events that promote genomic instability. Among genes that are involved in chromosomal replication, DNA polymerase alpha is essential for initiation of replication and lagging-strand synthesis. Here we examined the effect of two mutations in S. cerevisiae POL1, pol1-1 and pol1-17, on a microsatellite (GT)(16) tract. The pol1-17 mutation elevated the mutation rate 13-fold by altering sequences both inside and downstream of the (GT)(16) tract, whereas the pol1-1 mutation increased the mutation rate 54-fold by predominantly altering sequences downstream of the (GT)(16) tract in a RAD52-dependent manner. In a rad52 null mutant background pol1-1 and pol1-17 also exhibited different plasmid and chromosome loss phenotypes. Deletions of mismatch repair (MMR) genes induce a differential synergistic increase in the mutation rates of pol1-1 and pol1-17. These findings suggest that perturbations of DNA replication in these two pol1 mutants are caused by different mechanisms, resulting in various types of mutations. Thus, mutations of POL1 can induce a variety of mutator phenotypes and can be a source of genomic instability in cells.  相似文献   

15.
16.
To understand the role of POL30 in mutation suppression, 11 Saccharomyces cerevisiae pol30 mutator mutants were characterized. These mutants were grouped based on their mutagenic defects. Many pol30 mutants harbor multiple mutagenic defects and were placed in more than one group. Group A mutations (pol30-52, -104, -108, and -126) caused defects in mismatch repair (MMR). These mutants exhibited mutation rates and spectra reminiscent of MMR-defective mutants and were defective in an in vivo MMR assay. The mutation rates of group A mutants were enhanced by a msh2 or a msh6 mutation, indicating that MMR deficiency is not the only mutagenic defect present. Group B mutants (pol30-45, -103, -105, -126, and -114) exhibited increased accumulation of either deletions alone or a combination of deletions and duplications (4 to 60 bp). All deletion and duplication breakpoints were flanked by 3 to 7 bp of imperfect direct repeats. Genetic analysis of one representative group B mutant, pol30-126, suggested polymerase slippage as the likely mutagenic mechanism. Group C mutants (pol30-100, -103, -105, -108, and -114) accumulated base substitutions and exhibited synergistic increases in mutation rate when combined with msh6 mutations, suggesting increased DNA polymerase misincorporation as a mutagenic defect. The synthetic lethality between a group A mutant, pol30-104, and rad52 was almost completely suppressed by the inactivation of MSH2. Moreover, pol30-104 caused a hyperrecombination phenotype that was partially suppressed by a msh2 mutation. These results suggest that pol30-104 strains accumulate DNA breaks in a MSH2-dependent manner.  相似文献   

17.
The Saccharomyces cerevisiae DNA polymerase delta proofreading exonuclease-defective mutation pol3-01 is known to cause high rates of accumulating mutations. The pol3-01 mutant was found to have abnormal cell cycle progression due to activation of the S phase checkpoint. Inactivation of the S phase checkpoint suppressed both the pol3-01 cell cycle progression defect and mutator phenotype, indicating that the pol3-01 mutator phenotype was dependent on the S phase damage checkpoint pathway. Epistasis analysis suggested that a portion of the pol3-01 mutator phenotype involves members of the RAD6 epistasis group that function in both error-free and error-prone repair. These results indicate that activation of a checkpoint in response to certain types of replicative defects can result in the accumulation of mutations.  相似文献   

18.
Inactivation of mismatch repair (MMR) has been shown to increase the accumulation of spontaneous mutations and frequency of recombination for diverse pathogenic bacteria. Currently, little is known regarding the role of mutator phenotypes for the diversification of natural populations of opportunistic human pathogens in marine environments. In this study, a higher frequency of mutators was detected among V. parahaemolyticus strains obtained from environmental sources compared with clinical sources. Inactivation of the MMR gene mutS caused increased antibiotic resistance and phase variation resulting in translucent colony morphologies. Increased nucleotide diversity in mutS and rpoB alleles from mutator compared with wild-type strains indicated a significant contribution of the mutator phenotype to the evolution of select genes. The results of this study indicate that the inactivation of MMR in V. parahaemolyticus leads to increased genetic and phenotypic diversity. This study is the first to report a higher frequency of natural mutators among Vibrio environmental strains and to provide evidence that inactivation of MMR increases the diversity of V. parahaemolyticus .  相似文献   

19.
In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.  相似文献   

20.
Defects in mismatch repair (MMR) genes result in a mutator phenotype by inducing microsatellite instability (MI), a characteristic of hereditary nonpolyposis colorectal cancers (HNPCC) and a subset of sporadic colon tumors. Present models describing the mechanism by which germ line mutations in MMR genes predispose kindreds to HNPCC suggest a “two-hit” inactivation of both alleles of a particular MMR gene. Here we present experimental evidence that a nonsense mutation at codon 134 of the hPMS2 gene is sufficient to reduce MMR and induce MI in cells containing a wild-type hPMS2 allele. These results have significant implications for understanding the relationship between mutagenesis and carcinogenesis and the ability to generate mammalian cells with mutator phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号