首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The requirement for the sterol biosynthetic pathway for the occurrence of DNA synthesis in glial cells and, in particular, the relative roles of cholesterol and of mevalonate have been studied. Primary cultures of developing glial cells were synchronized by reducing the content of fetal calf serum (FCS) in the culture medium from 10% to 0.1% (vol/vol) for 48 h between days 4 and 6 in culture. Reversal of the resulting quiescent state by the return of the cultures to 10% serum caused after 24 h a marked increase in DNA synthesis, and this increase was prevented by the simultaneous addition of mevinolin, a specific inhibitor of the sterol biosynthetic pathway at the 3-hydroxy-3-methylglutaryl coenzyme A reductase step, at the time of serum repletion. A dose-dependent reversal of the mevinolin inhibition of DNA synthesis occurred with simultaneous addition of mevalonate to the culture medium. The induction of DNA synthesis by serum repletion, its inhibition by mevinolin, and the reversal of the inhibition by mevalonate were unaffected by a 95% reduction in exogenous cholesterol produced by utilization of lipoprotein-poor serum (LPPS) rather than FCS. Similarly, return of quiescent cultures to 10% LPPS containing mevinolin and sufficient low-density lipoprotein (LDL) to raise the cholesterol concentration 80-fold failed to restore DNA synthesis. In addition, reversal of the mevinolin inhibition of DNA synthesis by mevalonate occurred despite the continuous presence of mevinolin if mevalonate was added as late as 12 h after serum repletion, but not if added after 16 h or more.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Primary cultures of newborn rat cerebrum, which are composed of glial cells (principally astroglia), were used for examining the relationship between dolichol-linked glycoprotein synthesis and DNA synthesis in developing cerebral glia. The cells were synchronized by reducing the content of fetal calf serum in the culture medium from 10 to 0.1% (vol/vol) for 48 h between days 4 and 6 in culture. Reversal of the quiescent state by return of the cultures to 10% serum causes a marked increase in DNA synthesis 12-24 h later. A sharp increase in glycoprotein synthesis (incorporation of [3H]mannose) occurred in the first 12 h after serum repletion, preceding the increase in DNA synthesis. Tunicamycin, an inhibitor of the dolichol-linked pathway to glycoprotein synthesis at the first committed step in oligosaccharide formation, promptly and completely prevented the increase in glycoprotein synthesis and, in addition, the subsequent increase in DNA synthesis. The effects of tunicamycin on glycoprotein and DNA syntheses were reversible, and no comparable effect on total protein synthesis was observed. When tunicamycin was added only during a temporally circumscribed period in G1, i.e., from 3 to 9 h after serum repletion, the increase in DNA synthesis between 12 and 24 h after repletion was still markedly inhibited, i.e., to approximately 45% of the value in untreated cultures. The data thus show that there is a requirement for dolichol-linked glycoprotein synthesis for the subsequent occurrence of DNA synthesis and that this requirement is expressed late in the G1 phase of the cell cycle.  相似文献   

3.
The oligodendroglial enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), is a valuable marker for expression of oligodendroglial differentiation in glial primary cultures, and the inducibility of this enzyme by dibutyryl-3',5'-cyclic AMP (dBcAMP) appears to be limited to immature or developing oligodendroglia. To investigate the relationship between the induction of CNP and the sterol biosynthetic pathway, primary cultures of glia dissociated from the brains of newborn rats were maintained in 10% fetal calf serum (FCS) and exposed to 1 mM dBcAMP on day 7 in culture. Cultures so treated for either 48 h or 72 h demonstrated a three- to fourfold induction of CNP specific activity. The magnitude of this induction was not affected when the cholesterol content of the culture medium was reduced by greater than 95% by placing the cultures in 10% lipoprotein-poor serum rather than 10% FCS during the exposure to dBcAMP. Mevinolin (10 microM), a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of the sterol biosynthetic pathway, completely inhibited the induction of CNP by dBcAMP, while not affecting either the accumulation of cellular protein per flask or rate of protein synthesis. Simultaneous addition of mevalonate (20 mM) prevented the inhibition of the induction of CNP by mevinolin. However, simultaneous addition of low-density lipoprotein sufficient to increase the cholesterol content of the medium 80-fold failed to correct mevinolin's inhibition of the induction of CNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Treatment of quiescent cells with serum results concomitantly in an increase in cellular glutathione (GSH) content and growth stimulation. A possible association between the GSH increase and the growth response was examined by studying separately the effects of nutrients and growth factors on the levels of cellular GSH and proliferation of quiescent NRK-49F cells. The addition of fresh medium with 10% calf serum was found to result in both a twofold increase in cellular GSH and growth stimulation (DNA synthesis and cell proliferation). 10% calf serum alone, without fresh medium, stimulated cell growth but failed to cause a comparable increase in cellular GSH. The addition of fresh medium without 10% serum, and of 0.5 mM cysteine and glutamate, resulted in both instances in a marked increase in cellular GSH, but failed to stimulate cell growth. EGF, in contrast, induced a complete mitogenic response but did not increase cellular GSH. Finally, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), a specific inhibitor of GSH synthesis, decreased cellular GSH and inhibited EGF-induced DNA synthesis, but these two responses do not, in their dose dependency, correlate. The results obtained thus show that the increase in cellular GSH that occurs in quiescent, serum-stimulated NRK-49F cells is a result of nutrient repletion rather than mitogenic stimulation, and increased GSH levels do not necessarily precede DNA synthesis and mitosis.  相似文献   

5.
6.
The relationship between mevalonate and cell cycling was investigated in developing glial cells. Primary cultures of newborn rat brains were serum-depleted (0.1%, vol/vol) for 48 h on days 4-6 in vitro, then returned to 10% calf serum (time 0). After 48 h, 70-80% of the cells were glial fibrillary acidic protein (GFAP)-negative by indirect immunofluorescence; 79 +/- 7% were GFAP-positive after an additional 3 days. Serum shift-up resulted in 12 h of quiescence, and then by 20 h (S phase) in increased proportions of cells synthesizing DNA (from 15 +/- 6% to 75 +/- 4% by bromodeoxyuridine immunofluorescence at 12 h and 20 h, respectively) and rates of DNA synthesis (42 +/- 6 versus 380 +/- 32 cpm/micrograms of protein/h of [3H]thymidine uptake). Additional mevalonate (25 mM) for 30 min at 10 h reversed the inhibition of DNA synthesis apparent with mevinolin (150 microM), an inhibitor of mevalonate synthesis, present from time 0. Cycloheximide added simultaneously with mevalonate prevented this reversal of inhibition. To cause arrest at G1/S, cultures were exposed to hydroxyurea between 10 and 22 h. By 3 h after hydroxyurea removal, bromodeoxyuridine-labeled nuclei increased from 0% to 75 +/- 9%, and DNA synthesis increased 10-fold. Mevinolin failed to inhibit these increases. Thus, primary astroglial precursors stimulated to progress through the cell cycle express a mevalonate requirement in late G1, but before the G1/S transition. The effect of mevalonate was characterized further as being brief (30 min) and as requiring polypeptides.  相似文献   

7.
C-6 glioma cells, grown in medium supplemented with 5% delipidated foetal calf serum, were induced to enter a quiescent state by removing serum from the medium. Within 24h there was a 75–80% decline in the rate of incorporation of [14C]acetate or 3H2O into digitonin-precipitable sterols. Experiments with [3H]mevalonolactone as a labelled sterol precursor suggested that the decline in sterol synthesis was regulated primarily at a point in the pathway before the formation of mevalonate. The specific activities of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase decreased sharply in conjunction with the decline in sterol synthesis in the serum-free cultures; however, the activity of acetoacetyl-CoA thiolase was altered only slightly. The magnitude of the initial decline in reductase activity was not affected when 50-mm-NaF was included in the preincubation and assay buffers to prevent activation of physiologically inactive enzyme. However, after 6h of serum deprivation the decline in 3-hydroxy-3-methylglutaryl-CoA reductase activity was due to a decrease in the amount of latent activity. The sterol concentration in C-6 cells was unchanged after 24h in serum-free medium, although a 20% decrease in the sterol/fatty acid molar ratio occurred as a result of a small increase in the fatty-acid concentration. Incorporation of 3H2O into fatty acids was inhibited in the serum-deprived glial cells; however, this inhibition developed more slowly and was not as pronounced as the diminution in sterol synthesis. The results suggest that in C-6 glia, which resemble the glial stem cells of the developing brain, the decreased demand for membrane sterols in the quiescent state results in a decline in sterol synthesis, mediated primarily through co-ordinate changes in the activities of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

8.
Primary astroglial cultures were used to compare the relationships to cell cycling of dolichol-linked glycoprotein synthesis, and of availability of mevalonate, the precursor of dolichol and other isoprenoid lipids. With shift-up to 10% serum (time 0) after 48 h of serum depletion, the proportion of cells in S phase (bromodeoxyuridine immunofluorescence) remained under 15% for 12 h, then increased by 20 h to 72 +/- 10%; DNA synthetic rates (thymidine incorporation) increased 5-fold. S phase transition was prevented by addition at 10-12 h of tunicamycin, an inhibitor of transfer of saccharide moieties to dolichol. Mevinolin, an inhibitor of mevalonate biosynthesis, also blocked cycle progression when added at this time. However, mevinolin markedly inhibited the isoprenoid pathway, as reflected by over 90% reduction of sterol synthesis, without inhibiting net glycoprotein synthesis. Removal of mevinolin after a 24 h exposure delayed S phase until 48 h, following recovery of sterol synthesis, even though kinetics of glycoprotein synthesis were unaffected. Tunicamycin removal after 24 h spared sterol synthesis, but caused delay of S phase until 72 h, following recovery of glycoprotein synthesis. In mevinolin-treated cultures, S phase transition was restored by 1 h of exposure to mevalonate at 10 h, although cycling was thereby rendered sensitive to inhibition by cycloheximide and by tunicamycin. Cell cycle progression following hydroxyurea exposure and release was unaffected by mevinolin, tunicamycin, or cycloheximide. Thus, in these developing astroglia, mevalonate and its isoprenoid derivatives have at least two cell cycle-specific roles: dolichol-linked glycoprotein synthesis is required at or before the G1/S transition, while a distinct mevalonate requirement is apparent also in late G1.  相似文献   

9.
Abstract: The relation of cellular cholesterol content to a biochemical expression of oligodendroglial differentiation was studied in cultured C-6 glial cells. Induction of the oligodendroglial marker enzyme 2′: 3′-cyclic nucleotide 3′-phosphohydrolase (CNP) was determined after alteration of the sterol content of cellular membranes by exposure to compactin, a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis. The sterol content and as a consequence, the sterol/phospholipid molar ratio of C-6 glial cells were decreased by treating the cells, in 10% lipoprotein-poor serum, with various concentrations of compactin for 24 h. The degrees of sterol depletion thus produced were maintained for 48 h after removal of the compactin if the cells were maintained in serum-free medium, the culture conditions necessary for induction of CNP in untreated cells. Forty-eight hours after removal of serum, no induction of CNP occurred in cells previously treated with 0.5 μg/ml of compactin, whereas untreated cells exhibited a three- to fourfold increase in CNP activity. Intermediate degrees of sterol depletion resulted in intermediate degrees of inhibition of the CNP induction. Moreover, the morphological expressions of glial differentiation observed in the untreated cells did not occur in the sterol-depleted cells. That the effect of compactin on the induction of CNP relates to depletion of sterol was indicated by the finding that when low-density lipoprotein was added to the compactin-treated cells, the induction of CNP, the morphological expressions of differentiation and the sterol/phospholipid molar ratios were preserved. The degree of sterol depletion that totally prevented the induction of CNP had no effect on (Na++ K+)-activated ATPase activity, total protein synthesis and cell viability. The data define a critical role for sterol in oligodendroglial differentiation in this model system.  相似文献   

10.
Primary cultures of cells dissociated from fetal rat brain were utilized to define the developmental changes in cholesterol biosynthesis and the role of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the regulation of these changes. Cerebral hemispheres of fetal rats of 15-16 days of gestation were dissociated mechanically into single cells and grown in the surface-adhering system. Cholesterol biosynthesis, studied as the rate of incorporation of [14C]acetate into digitonin-precipitable sterols, was shown to exhibit two distinct increases in synthetic rates, a prominent increase after 6 days in culture and a smaller one after 14 days in culture. Parallel measurements of HMG-CoA reductase activity also demonstrated two discrete increases in enzymatic activity, and the quantitative and temporal aspects of these increases were virtually identical to those for cholesterol synthesis. These data indicate that cholesterol biosynthesis undergoes prominent alterations with maturation and suggest that these alterations are mediated by changes in HMG-CoA reductase activity. The timing of the initial prominent peak in both cholesterol biosynthesis and HMG-CoA reductase activity at 6 days was found to be the same as the timing of the peak in DNA synthesis, determined as the rate of incorporation of [3H]thymidine into DNA. The second, smaller peak in reductase activity and sterol biosynthesis at 14 days occurred at the time of the most rapid rise in activity of the oligodendroglial enzyme, 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP). These latter observations suggest an intimate relationship of the sterol biosynthetic pathway with cellular proliferation and with oligodendroglial differentiation in developing mammalian brain.  相似文献   

11.
Cultures of myocytes from embryonic chick atria grown in medium supplemented with fetal calf serum from which lipoproteins had been removed demonstrated a nearly 10-fold increase in sensitivity of beating to the muscarinic cholinergic agonist carbamylcholine compared to cells grown with control serum. This effect was reversed by growth of cells in medium supplemented with lipoprotein-depleted serum (LPDS) reconstituted with the low density lipoprotein fraction from fetal calf serum. In cells grown in LPDS, total cell cholesterol was increased 32% over control levels and returned to control levels in cells grown with LPDS reconstituted with low density lipoprotein. Growth of cells in LPDS plus mevinolin, an inhibitor of endogenous cholesterol synthesis, also reversed the effects of LPDS on cholesterol content and sensitivity of beating to carbamylcholine. The ability of mevinolin (30 microM) to reverse the effect of LPDS on sensitivity of beating to carbamylcholine was inhibited by mevalonic acid, a metabolic precursor to cholesterol, with an IC50 of 7 x 10(-5) M. These data suggest that mevinolin reverses the effects of LPDS by altering cellular cholesterol levels. Enhanced responsiveness of embryonic chick heart cells to muscarinic stimulation was associated with a 2-fold increase in the number of muscarinic receptors with high affinity for agonist from 82 +/- 10 fmol/mg protein in media containing fetal calf serum to 175 +/- 12 fmol/mg protein in cells grown in the presence of LPDS. The distribution of receptors between high affinity (RH) and low affinity (RL) forms changed from 41% RH and 59% RL in cells grown in control serum to 66.5% RH and 33.5% RL in cells grown in LPDS. Quantitation of the effect of growth in LPDS on the levels of guanine nucleotide regulatory proteins No and Ni which couple the muscarinic receptor to a physiologic response, demonstrated that the relative levels of the 39-kDa alpha subunits of No and 41-kDa alpha subunits of Ni determined by ADP ribosylation with pertussis toxin and immunoblotting increased 2-fold compared to control cells grown with fetal calf serum. Growth of cells with medium supplemented with LPDS plus mevinolin reduced the levels of alpha 39 and alpha 41 to below the levels in control cells. Levels of the beta subunit of No and Ni were unaffected by growth with LPDS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Incubation of quiescent tumor cells with fetal calf serum induced ornithine decarboxylase (ODCase) activity concomitantly with mitogenic stimulation. Pretreatment of cells with highly purified natural or recombinant murine interferon-gamma (MuIFN-gamma) for 5 h caused a dose-dependent increase of ODCase activity induced by fetal calf serum (FCS). Pretreatment of target cells with IFN-gamma for 5 h in absence of FCS stimulation did not induce ODCase activity. When pretreatment of cells with natural or recombinant MuIFN-gamma was prolonged for 18 h both ODCase activity and DNA synthesis induced by FCS were suppressed. By contrast when a mixture of MuIFN-alpha and -beta was used, ODCase activity was significantly suppressed after 5 h pretreatment compared to untreated controls. These results suggest that IFN-gamma exerts a differential effect on mitogen-stimulated events depending on the dose and the time of addition.  相似文献   

13.
Normal guinea-pig endometrial cells, grown in primary culture, were made quiescent by serum depletion. Quiescent cells cultured in the control medium (containing 1% fetal calf serum treated with dextran-coated charcoal, DCC-FCS) showed a steady and weak rate of [3H]thymidine incorporation, but the addition of 15% fetal calf serum (FCS) or 10% DCC-FCS to the control medium induced a significant increase of DNA synthesis, demonstrating the responsiveness of the quiescent cells to stimulation. A lower but significant increase in [3H]thymidine incorporation was elicited by epidermal growth factor (EGF, 100 ng/ml) or insulin (10 micrograms/ml) added to the basal medium. Oestradiol-17 beta added to the control medium at concentrations ranging from 10(-10) to 10(-5) mol/l not only failed to increase but even inhibited [3H]thymidine incorporation at the highest concentrations tested. An additive effect was noticed when quiescent cells were incubated with oestradiol-17 beta (10(-9) mol/l) in the presence of 10% DCC-FCS, but no synergistic effect occurred when 2 x 10(-9) mol oestradiol-17 beta/l was combined with either EGF (100 ng/ml) or insulin (10 micrograms/ml). Oestradiol-17 beta appears unable alone to stimulate DNA synthesis in normal endometrial cells, but requires factor(s) present in fetal calf serum.  相似文献   

14.
Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional polypeptide that regulates the proliferation and differentiation of various types of animal cells. TGF-beta 1 stimulated glucose uptake and the expression of a brain-type glucose transporter (GLUT1) mRNA in quiescent mouse 3T3 cells. TGF-beta 1 also synergistically stimulated these activities when given together with calf serum, phorbol ester, fibroblast growth factor, or epidermal growth factor. The increases in glucose uptake and the GLUT1 mRNA level were induced by picomolar concentrations of TGF-beta 1 within 3 h of stimulation, reached a peak between 6 and 9 h, and then decreased gradually to basal levels before an increase in DNA synthesis. The stimulation of GLUT1 mRNA expression was completely abolished by actinomycin D, but was not affected by cycloheximide, suggesting that new protein synthesis was not required for the expression of GLUT1 mRNA. TGF-beta 1 had little mitogenic activity and did not affect serum-induced DNA synthesis in quiescent 3T3 cells. However, it stimulated DNA synthesis synergistically when given with fibroblast growth factor, epidermal growth factor, phorbol ester, or insulin. These results suggest that TGF-beta 1 mediates the stimulation of glucose uptake, GLUT1 mRNA expression, and DNA synthesis via a pathway(s) and cellular components distinct from those for other growth factors. The possible role of the TGF-beta 1-induced stimulation of glucose transport activity in the control of mouse fibroblast proliferation is also discussed.  相似文献   

15.
Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulates neurite outgrowth and acetylcholinesterase (ACE) activity in C1300 (Neuro-2A) murine neuroblastoma cells. Sprouting of neurites began within 4-8 h, before changes in cell proliferation could be detected by [3H]thymidine incorporation or flow cytometry. In contrast, the increase in ACE activity was temporally correlated with suppression of DNA synthesis, which occurred after 8 h. The activity of the membrane marker enzyme phosphodiesterase I was not stimulated by mevinolin. Suppression of protein synthesis with cycloheximide blocked the induction of ACE activity but only partially inhibited neurite outgrowth in the mevinolin-treated cultures. When mevinolin was removed from the culture medium, most of the cells retracted their neurites within 2 h, but ACE activity did not decline until DNA synthesis began to return to control levels after 10 h. Similarly, retraction of neurites in differentiated cells exposed to colchicine was not accompanied by a decrease in ACE activity. DNA histograms suggested that mevinolin arrests neuroblastoma cells in both the G1 and G2/M compartments of the cell cycle. Other cytostatic drugs that arrest cells at different stages of the cell cycle did not cause Neuro-2A cells to form neurites such as those seen in the mevinolin-treated cultures. When incorporation of [3H]acetate into isoprenoid compounds was studied in cultures containing mevinolin in concentrations ranging from 0.25 microM to 25 microM, the labeling of cholesterol, dolichol, and ubiquinone was suppressed by 90% or more at all concentrations. However, significant growth arrest and cell differentiation were observed only at the highest concentrations of mevinolin. Supplementing the medium with 100 microM mevalonate prevented the cellular response to mevinolin, but additions of cholesterol, dolichol, ubiquinone, or isopentenyl adenine were generally ineffective. The cholesterol content of neuroblastoma cells incubated with 25 microM mevinolin for 24 h was not diminished, and protein glycosylation, measured by [3H]mannose incorporation, was decreased only after 24 h at high mevinolin concentration. These studies suggest that the stimulation of neurite outgrowth and the increase in ACE activity induced by mevinolin are independent phenomena. Whereas neurite outgrowth is not related directly to the effects of mevinolin on cell cycling, the induction of ACE is correlated with the inhibition of cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
17.
Rapidly growing Swiss 3T3 fibroblasts possess a bumetanide-sensitive K+ transport system that is dependent on both Na+ and Cl- ions; a smaller bumetanide-insensitive component of K+ transport is also present. In cells brought to the quiescent state by 8-11 days of incubation without a medium change, the bumetanide-sensitive rate of transport was reduced by 63%; the bumetanide-insensitive rate did not change. Removal of dialyzed fetal calf serum from the uptake medium resulted in a substantial reduction in bumetanide-sensitive uptake in both rapidly growing cells (33% reduction) and quiescent cells (68% reduction) but had no effect on bumetanide-insensitive uptake. Insulin was almost as effective as dialyzed fetal calf serum in stimulating bumetanide-sensitive uptake; insulin was maximally stimulatory at 2.5 micrograms/ml. The combination of insulin, epidermal growth factor, and arginine-vasopressin was maximally effective in stimulating both bumetanide-sensitive K+ uptake and 3H-thymidine incorporation in quiescent cells; bumetanide, however, did not interfere with the hormonal stimulation of DNA synthesis. Thus, the bumetanide-sensitive K+ transport system is not necessary for such stimulation to occur. Furthermore, concentrations of hormones which stimulated significant levels of DNA synthesis produced no elevation in the intracellular concentration of K+. We conclude that the bumetanide-sensitive pathway of K+ transport is modulated by serum and by mitogenic hormones, but does not play a role in the stimulation of DNA synthesis by these factors.  相似文献   

18.
The effects of U-61,431F, ciprostene, a stable prostacyclin analogue, were examined on the proliferation of cultured quiescent bovine aortic endothelial cells (EC) and smooth muscle cells (SMC). After stimulation with 5% fetal calf serum, U-61,431F suppressed both the DNA synthesis and proliferation of SMC dose-dependently at the concentration of 3-100 microM, but had no effect on either of them in EC at a concentration of up to 30 microM. The inhibitory effect on DNA synthesis was greater in SMC than in EC at 3-50 microM. When SMC were stimulated with platelet-derived growth factor (PDGF) for 2 hrs followed by a 22-hr incubation with insulin, U-61,431F (1-50 microM) administered at the time of PDGF stimulation did not inhibit DNA synthesis. SMC initiated and terminated DNA synthesis at about 15-18 h and 24 h after stimulation with serum, respectively. Inhibition of DNA synthesis in serum-stimulated SMC as a function of the addition time of U-61,431F reduced at 3-12 h after the stimulation. U-61,431F raised the cyclic AMP (cAMP) content in SMC. Moreover, a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, and a more specific cAMP phosphodiesterase inhibitor, Ro 20-1724, augmented the inhibition of DNA synthesis in SMC concomitant with further elevation of cAMP level. These results suggest that U-61,431F inhibits DNA synthesis of SMC acting in the progression stage rather than in the competence stage, with little antiproliferative effect on EC. cAMP may play an important role in its antiproliferative action in SMC.  相似文献   

19.
ETYA (5,8,11,14-eicosatetraynoic acid), a polyunsaturated fatty acid analogue, inhibits proliferation of PC3 and U937 cells and induces a limited differentiation in U937 cells. Human prostate PC3 cells cultured for 72 h with 40 microM ETYA in fetal calf serum contained putative lipofuscin bodies, myelin figures and mitochondria with damaged cristae and matrices. These changes were absent from human U937 monoblastoid cells incubated with ETYA in CPSR3, a semipurified serum replacement. U937 cells cultured with ETYA in fetal calf serum contained occasional lipofuscin bodies, while PC3 cells cultured in CPSR3 exhibited all of the changes described. ETYA reduced the oxygen consumption of both cell lines. Therefore we conclude: (a) The response to ETYA by cells of dissimilar developmental origin is not identical; (b) unidentified serum components can augment potential ETYA-induced oxidative stress-responses of cells; (c) inhibition of U937 proliferation by ETYA does not depend upon the morphologic changes seen in PC3 cells, which resemble sequelae of oxidative stress with excess free radicals; and (d) rapid ETYA-induced inhibition of oxygen consumption in both cell lines implies a reduced synthesis of ATP that could contribute to the reversible impairment of cellular proliferation.  相似文献   

20.
Although several lines of evidence implicate cAMP in the regulation of intestinal cell proliferation, the precise role of this second messenger in the control of the human colon cancer cell cycle is still unclear. In order to investigate the role of cAMP in HT29 cell proliferation, we have tested the effect of vasoactive intestinal peptide (VIP) and forskolin on DNA synthesis and cell number, focusing on the time-dependent efficacy of the treatment. The cells were arrested in G0/G1 phase by incubation for 24 h in serum-free medium and proliferation was re-initiated by addition of either 85 nM insulin or 0.5% fetal calf serum. In the presence of fetal calf serum, G1/S transition was found to occur earlier than with insulin. Exposure of the HT29 cells to 10(-5) M forskolin in the early stages of growth induction (within 12 h from FCS addition or within 14 h from insulin treatment) resulted in a significant inhibition of DNA synthesis and a delayed entry in the S phase. By contrast, VIP (10(-7) M) was inhibitory only when added within a narrow window (10 to 12 h or 12 to 14 h following FCS or insulin addition, respectively). The difference in efficiency of forskolin and VIP to inhibit cell proliferation may be correlated with their own potency to promote long-lasting cAMP accumulation. The combination of VIP plus forskolin had synergistic effects on both cAMP accumulation and cell-growth inhibition. Taken together, our data indicate that cAMP may act at a step in the late G1 or G1/S transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号