首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study deals with the effect of a single cycle of body accelerations on blood flow in arteries. Such body accelerations are usually caused unintentionally, for example during travel in road vehicles, aircraft or spacecraft. A mathematical model of flow in single arteries subject to a pulsating pressure gradient due to the normal heart action as well as body acceleration expressible in terms of unit functions is presented. The body acceleration is such that it builds up from zero to a maximum value at a uniform rate, remains constant at the maximum value for some time, and thereafter reduces to zero at a uniform rate. The resulting equations are solved by using the technique of Laplace transforms. Computational results are presented for the effects of body accelerations on flow variables namely flow rate, velocity of flow, acceleration and shear stress corresponding to blood flow in the human aorta.  相似文献   

2.
The human system may be subjected to a body acceleration deliberated for example by making subjects lie down on vibrating tables or more frequently unintentionally, for example during travel in water and land or in air and space. The present study is concerned with the effects of externally imposed body accelerations on blood flow in a branched system of arteries. A finite-element model of flow in the arterial system subject to periodic body accelerations is presented. Computational results on the flow rates through selected arteries and the corresponding inlet and outlet pressures under different conditions (magnitude, frequency and direction) of applied acceleration are presented.  相似文献   

3.
In the present paper pressure changes induced by sudden body acceleration are studied "in vivo" on the dog and compared to the results obtainable with a recently developed mathematical model. A dog was fixed to a movable table, which was accelerated by a compressed air piston for less than 1 s. Acceleration was varied by changing the air pressure in the piston. Pressure was measured during the experiment at different points along the vascular bed. However, only data obtained in the carotid artery and abdominal aorta are presented here. The results demonstrated that impulse body accelerations cause significant pressure peaks in the vessel examined (about + 25 mmHg in the carotid artery with body acceleration of g/2). Moreover, pressure changes are rapidly damped, with a time constant of about 0.1s. From the present results it may be concluded that, according to the prediction of the mathematical model, body accelerations such as those occurring in normal life can induce pressure changes well beyond the normal pressure value.  相似文献   

4.
A three-dimensional model of the human cervical spine for impact simulation   总被引:4,自引:0,他引:4  
A three-dimensional analytical model of the cervical spine is described. The cervical vertebrae and the head are modeled as rigid bodies which are interconnected by deformable elements representing the intervertebral disks, facet joints, ligaments and muscles. A special pentahedral continuum element for representing the articular facets is described which effectively maintains stability of the cervical spine in both lateral and frontal plane accelerations, which is very difficult with multi-spring models of the facets. A simplified representation is used for the spine and body below the level of T1. The neck musculature is modeled by over 100 muscle elements representing 22 major muscle groups in the neck. The model has been validated for frontal and sideways impact accelerations by simulating published experimental data. Results are also presented to show the effects of the stretch reflex response on the dynamics of the head and neck under moderate acceleration.  相似文献   

5.
A proper understanding of the interactions of body acceleration and a magnetic field with blood flow could be useful in the diagnosis and treatment of some health problems. In the work reported in this paper we studied the pulsatile flow of blood through stenosed arteries, including the effects of body acceleration and a magnetic field. Blood is regarded as an electrically conducting, incompressible, couple-stress fluid in the presence of a magnetic field along the radius of the tube. The effects of the body acceleration and the magnetic field on the axial velocity, flow rate, and fluid acceleration were obtained analytically by use of the Hankel transform and the Laplace transform. Velocity variations under different conditions are shown graphically. The results have been compared with those from other theoretical models, and are in good agreement. Finally, our mathematical model gives a simple velocity expression for blood flow so it will help not only in the field of physiological fluid dynamics but will also help medical practitioners with elementary knowledge of mathematics.  相似文献   

6.
Concussion, or mild traumatic brain injury, occurs in many activities, mostly as a result of the head being accelerated. A comprehensive study has been conducted to understand better the mechanics of the impacts associated with concussion in American football. This study involves a sequence of techniques to analyse and reconstruct many different head impact scenarios. It is important to understand the validity and accuracy of these techniques in order to be able to use the results of the study to improve helmets and helmet standards. Two major categories of potential errors have been investigated. The first category concerns error sources specific to the use of crash test dummy instrumentation (accelerometers) and associated data processing techniques. These are relied upon to establish both linear and angular head acceleration responses. The second category concerns the use of broadcast video data and crash test dummy head-neck-torso systems. These are used to replicate the complex head impact scenarios of whole body collisions that occur on the football field between two living human beings. All acceleration measurement and processing techniques were based on well-established practices and standards. These proved to be reliable and reproducible. Potential errors in the linear accelerations due to electrical or mechanical noise did not exceed 2% for the three different noise sources investigated. Potential errors in the angular accelerations due to noise could be as high as 6.7%, due to error accumulation of multiple linear acceleration measurements. The potential error in the relative impact velocity between colliding heads could be as high as 11%, and was found to be the largest error source in the sequence of techniques to reconstruct the game impacts. Full-scale experiments with complete crash test dummies in staged head impacts showed maximum errors of 17% for resultant linear accelerations and 25% for resultant angular accelerations.  相似文献   

7.
Quantification of lower limb muscle function during gait or other common activities may be achieved using an induced acceleration analysis, which determines the contributions of individual muscles to the accelerations of the body's centre of mass. However, this analysis is reliant on a mathematical optimisation for the distribution of net joint moments among muscles. One approach that overcomes this limitation is the calculation of a muscle's potential to accelerate the centre of mass based on either a unit-force or maximum-activation assumption. Unit-force muscle potential accelerations are determined by calculating the accelerations induced by a 1 N muscle force, whereas maximum-activation muscle potential accelerations are determined by calculating the accelerations induced by a maximally activated muscle. The aim of this study was to describe the acceleration potentials of major lower limb muscles during normal walking obtained from these two techniques, and to evaluate the results relative to absolute (optimisation-based) muscle-induced accelerations. Dynamic simulations of walking were generated for 10 able-bodied children using musculoskeletal models, and potential- and absolute induced accelerations were calculated using a perturbation method. While the potential accelerations often correctly identified the major contributors to centre-of-mass acceleration, they were noticeably different in magnitude and timing from the absolute induced accelerations. Potential induced accelerations predicted by the maximum-activation technique, which accounts for the force-generating properties of muscle, were no more consistent with absolute induced accelerations than unit-force potential accelerations. The techniques described may assist treatment decisions through quantitative analyses of common gait abnormalities and/or clinical interventions.  相似文献   

8.
Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman’s Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization.  相似文献   

9.
The kinematics and hydrodynamics of routine linear accelerations were studied in American eels, Anguilla rostrata, using high-speed video and particle image velocimetry. Eels were examined both during steady swimming at speeds from 0.6 to 1.9 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s(-2). Multiple regression of the acceleration and steady swimming speed on the body kinematics suggests that eels primarily change their tail-tip velocity during acceleration. By contrast, the best predictor of steady swimming speed is body wave speed, keeping tail-tip velocity an approximately constant fraction of the swimming velocity. Thus, during steady swimming, Strouhal number does not vary with speed, remaining close to 0.32, but during acceleration, it deviates from the steady value. The kinematic changes during acceleration are indicated hydrodynamically by axial fluid momentum in the wake. During steady swimming, the wake consists of lateral jets of fluid and has minimal net axial momentum, which reflects a balance between thrust and drag. During acceleration, those jets rotate to point downstream, adding axial momentum to the fluid. The amount of added momentum correlates with the acceleration, but is greater than the necessary inertial force by 2.8+/-0.6 times, indicating a substantial acceleration reaction.  相似文献   

10.
Experiments are sent to space laboratories in order to take advantage of the low-gravity environment. However, it is crucial to appreciate the distinction between the real microgravity environment and "weightlessness" or "simulated microgravity". The microgravity in space laboratories may be of much smaller magnitude than the gravitational acceleration on earth. However, it is not zero, nor even one microg (defined as 1e-6 earth gravity). Moreover, the orientation is not uniaxial, as on earth. The net acceleration that acts on a space experiment arises from, e.g., orbital mechanics, atmospheric drag, and thruster firings, and it can act on the experiments in gravity-like ways. In essence, a well-defined, stable 1 g acceleration on the earth's surface is substituted for a complex array of dynamically changing accelerations with ever-changing frequency content, magnitude and direction. This paper will show measured accelerations on the Shuttle from launch to orbit, as well as the latest measurements on the International Space Station (ISS). The ISS data presented here represent over 34,790 hours of data obtained from June 2002 to April 2003 during Increments 5 and 6 of the ISS construction cycle. The quasisteady acceleration level on the ISS has been measured to be on the order of a few microg during time allotted to microgravity mode. The vibratory acceleration environment spans a rich spectrum from 0.01-300 Hz.  相似文献   

11.
Whereas gravity has an inspiratory effect in upright subjects, transient upward acceleration is reported to have an expiratory effect. To explore the respiratory effects of transient axial accelerations, we measured axial acceleration at the head and transrespiratory pressure or airflow in five subjects as they were dropped or lifted on a platform. For the first 100 ms, upward acceleration caused a decrease in mouth pressure and inspiratory flow, and downward acceleration caused the opposite. We also simulated these experimental observations by using a computational model of a passive respiratory system based on anatomical data and normal respiratory characteristics. After 100 ms, respiratory airflow in our subjects became highly variable, no longer varying with acceleration. Electromyograms of thoracic and abdominal respiratory muscles showed bursts of activity beginning 40-125 ms after acceleration, suggesting reflex responses responsible for subsequent flow variability. We conclude that, in relaxed subjects, transient upward axial acceleration causes inspiratory airflow and downward acceleration causes expiratory airflow, but that after ~100 ms, reflex activation of respiratory musculature largely determines airflow.  相似文献   

12.
Transitory tasks, such as gait termination, involve interactions between neural and biomechanical factors that challenge postural stability and head stabilization patterns in older adults. The aim of the study was to compare upper body patterns of acceleration during planned gait termination at different speeds between young and older women. Ten young and 10 older women were asked to carry out three gait termination trials at slow, comfortable and fast speed. A stereophotogrammetric system and a 15-body segments model were used to calculate antero-posterior whole-body Center of Mass (AP CoM) speed and to reconstruct the centroids of head, trunk and pelvis segments. RMS of three-dimensional linear accelerations were calculated for each segment and the transmission of acceleration between two segments was expressed as a percentage difference. Older women reported lower AP CoM speed and acceleration RMS of the three upper body segments than young women across the three speed conditions. A lower pelvis-to-trunk attenuation of accelerations in the transverse plane was observed in older compared to young women, and mainly in the medio-lateral direction. As possible explanations, older women may not need to reduce acceleration as young women because of their lower progression speed and the subsequent acceleration at upper body levels. On the other hand, older women may prioritize a decrease in the whole body progression speed at expense of the involvement of upper body segments. This limits the attenuation of the accelerations, particularly in the transverse plane, implying an increased dynamic unbalance in performing this transitory task.  相似文献   

13.
The human growth curve shows two (and only two) outstanding periods of accelerated growth—the circumnatal and the adolescent. The circumnatal growth cycle attains great velocity, which reaches a maximum at the time of birth. The curve of this cycle is best fitted by a theoretical skew curve of Pearson''s Type I. It has a theoretical range of 44 months and a standard deviation of 5.17 months. The modal velocity is 10.2 kilos per year. The adolescent growth cycle has less maximum velocity and greater range in time than the circumnatal cycle. The best fitting theoretical curve is a normal frequency curve ranging over about 10 years with a standard deviation of about 21 months and a modal velocity of 4.5 kilos per year. The two great growth accelerations are superimposed on a residual curve of growth which measures a substratum of growth out of which the accelerations arise. This probably extends from conception to 55 years, on the average. It is characterized by low velocity, averaging about 2 kilos per year from 2 to 12 years. It is interpreted as due to many growth operations coincident or closely blending in time. Our curve shows no third marked period of acceleration at between the 3rd and 6th years. The total growth in weight of the body is the sum of the weight of its constituent organs. In some cases these keep pace with the growth of the body as a whole; great accelerations of body growth are due to great accelerations in growth of the constituent organs. In other cases one of the organs of the body (like the thymus gland) may undergo a change in weight that is not in harmony with that of the body as a whole. The development of the weight in man is the resultant of many more or less elementary growth processes. These result in two special episodes of growth and numerous smaller, blending, growth operations. Hypotheses are suggested as to the basis of the special growth accelerations.  相似文献   

14.
15.
Avian embryos develop within a hard eggshell which permits the measurement of heart rate while maintaining an adequate gas exchange through the chorioallantoic membrane. Heart rate has been determined from cardiogenic signals detected either noninvasively, semi-invasively or invasively with various transducers. Firstly, we reviewed these previously-developed methods and experimental results on heart rate fluctuations in prenatal embryos. Secondly, we presented new findings on the development of heart rate fluctuations during the last stages of incubation, with emphasis on the perinatal period, which remained to be studied. Three patterns of acceleration of the instantaneous heart rate were unique to the external pipping period: irregular intermittent large accelerations, short-term repeated large accelerations and relatively long-lasting cyclic small accelerations. Besides these acceleration patterns, respiratory arrhythmia, which comprimised oscillating patterns with a period of 1-1.5 s, appeared during the external pipping period. Furthermore, additional oscillating patterns with a period of 10-15 min were found in some externally pipped embryos.  相似文献   

16.
Summary Tethered flies were subjected to accelerations about their vertical axes while flying or walking. These accelerations were applied either suddenly to stationary animals or continuously by oscillating the animal from side to side. Head and wing movements resulting from the imposed angular accelerations were photographed with a camera and a stroboscopic flash.Analysis of the photographs shows that the wing movements act to counter the imposed angular accelerations and that during sinusoidal oscillations about the vertical axis, head turns are in antiphase with angular acceleration.Head turns do not occur when the halteres are absent or present and not oscillating. When oscillating, the halteres detect high values of angular acceleration, outside the known capabilities of the visual movement detection system.  相似文献   

17.
In several species of starfish, it has been reported that the meiotic divisions in fertilized oocytes occur precociously compared to those in unfertilized oocytes. The nature of the 'acceleration' of meiosis was studied using Pisaster ochraceus oocytes. The extent of the acceleration of first polar body formation was found to be completely dependent on the time of fertilization (or artificial activation); fertilization at about 100 min after 1–methyladenine application accelerated meiosis I the most, while earlier or later fertilization resulted in a smaller extent of accelerations of meiosis I. Observation of isolated meiotic spindles and fluorescent visualization of meiotic spindles in whole oocytes showed that progression of meiosis I in Pisaster oocytes pauses transiently at metaphase I for more than 40min unless they are activated. The activation shortened the duration of metaphase I, which resulted in the acceleration of first polar body formation. A new term 'metaphase pause' is proposed to define this long duration of metaphase I in starfish oocytes.  相似文献   

18.
Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.  相似文献   

19.
Braun M 《Planta》1996,199(3):443-450
Centrifugal accelerations of 50-250 g were applied to rhizoids of Chara globularis Thuill. at stimulation angles (alpha) of 5-90 degrees between the acceleration vector and the rhizoid axis. After the start of centrifugation, the statoliths were pressed asymmetrically onto the centrifugal flank of the apical cell wall. In contrast to the well-known bending (by bowing) under 1 g, the rhizoids responded in two distinct phases. Following an initial phase of sharp bending (by bulging), which is similar to the negatively gravitropic response of Chara protonemata, rhizoids stopped bending and, in the second phase, grew straight in directions clearly deviating from the direction of acceleration. These response angles (beta) between the axis of the bent part of the rhizoid and the acceleration vector were strictly correlated with the g-level of acceleration. The higher the acceleration the greater was beta. Except for the sharp bending, the shape and growth rate of the centrifuged rhizoids were not different from those of gravistimulated control rhizoids at 1 g. These results indicate that gravitropic bending of rhizoids during enhanced accelerations (5 degrees < or = alpha < or = 90 degrees) is caused not only by subapical differential flank growth, as it is the case at 1 g, but also by also by the centripetal displacement of the growth centre as was recently discussed for the negative gravitropism of Chara protonemata. A hypothesis for cytoskeletally mediated polar growth is presented based on data from positive gravitropic bending of Chara rhizoids at 1 g and from the anomalous gravitropic bending of rhizoids compared with the negatively gravitropic bending of Chara protonemata. The data obtained are also relevant to a general understanding of graviperception in higher-plant organs.  相似文献   

20.
Because of the nature of running, the forces encountered require a proper coordination of joint action of the lower extremity to dissipate the ground reaction forces and accelerations through the kinetic chain. Running-related muscle fatigue may reduce the shock absorbing capacity of the lower extremity and alter running kinematics. The purpose of this study was to determine if a bout of exhaustive running at a physiologically determined high intensity, changes running kinematics, impact accelerations, and alters shock attenuating capabilities. It was hypothesized that as a result of fatigue induced by an exhaustive run, running kinematics, impact accelerations at the head and shank, acceleration reduction, and shock attenuation would change. A within-subject, repeated-measures design was used for this study. Twelve healthy, competitive male and female distance runners participated. Subjects performed 2 testing sessions consisting of a VO2max treadmill protocol to determine the heart rate at ventilatory threshold and a fatigue-inducing running bout at the identified ventilatory threshold heart rate. Kinematic data included knee flexion, pronation, time to maximum knee flexion, and time to maximum pronation. Acceleration data included shank acceleration, head acceleration, and shock attenuation. No significant differences resulted for the kinematic or acceleration variables. Although the results of this study do not support the original hypotheses, the influence of running fatigue on kinematics and accelerations remains inconclusive. Future research is necessary to examine fatigue-induced changes in running kinematics and accelerations and to determine the threshold at which point the changes may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号