首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used fluorescence resonance energy transfer (FRET) to detect and quantitate the interaction of the sarcoplasmic reticulum Ca-ATPase (SERCA) with phospholamban (PLB) in membranes. PLB inhibits SERCA only at submicromolar Ca. It has been proposed that relief of inhibition at micromolar Ca is due to dissociation of the inhibitory complex. To test this hypothesis, we co-reconstituted donor-labeled SERCA and acceptor-labeled I40A-PLB (superinhibitory, monomeric PLB mutant) in membranes of defined lipid and protein composition, with full retention of Ca-dependent ATPase activity and inhibitory regulation by PLB. FRET from SERCA to PLB was measured as a function of membrane concentrations of PLB and SERCA, and functional activity was measured on the same samples. The data revealed clearly that the stoichiometry of binding is one PLB per SERCA, and that binding is a strict function of the ratio of total PLB to SERCA in the membrane. We conclude that the dissociation constant of PLB binding to SERCA is far less than physiological PLB membrane concentrations. Binding at low Ca (pCa 6.5), where I40A-PLB inhibits SERCA, was virtually identical to that at high Ca (pCa 5.0), where no inhibition was observed. However, the limiting energy transfer at saturating PLB was less at high Ca, indicating a greater donor-acceptor distance. We conclude that (a) the affinity of PLB for SERCA is so great that PLB is essentially a SERCA subunit under physiological conditions and (b) relief of inhibition at micromolar Ca is due to a structural rearrangement within the SERCA-PLB complex, rather than dissociation.  相似文献   

2.
Eeva-Liisa Karjalainen  Andreas Barth 《BBA》2007,1767(11):1310-1318
The sarcoplasmic reticulum Ca2+-ATPase (SERCA1a) pumps Ca2+ and countertransport protons. Proton pathways in the Ca2+ bound and Ca2+-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca2+ bound state Ca2E1, one of the proposed Ca2+ entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca2+-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca2+ binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca2+ dissociation pathways. We suggest that separate proton and Ca2+ pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.  相似文献   

3.
D J Bigelow  G Inesi 《Biochemistry》1991,30(8):2113-2125
We have used fluorescence spectroscopy to characterize three covalently bound spectroscopic maleimide derivatives with respect to their location within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum (SR). These derivatives include (1) 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid, (2) 4-(dimethylamino)azobenzene-4'-maleimide, and (3) fluorescein 5'-maleimide. Biochemical assays demonstrate that modification with any of these three derivatives results in the same functional effects, observed following derivatization of cysteines 344 and 364 by N-ethylmaleimide [Saito-Nakatsuka et al. (1987) J. Biochem. (Tokyo) 101, 365-376]. These residues bracket the ATPase's phosphorylation site (Asp 351) and thus may provide spectroscopic probes of the protein's conformation in this essential region. In agreement with sequencing results, SDS-polyacrylamide gels show that maleimide-modified SR exhibits fluorescence exclusively on the A1 tryptic fragment of the Ca-ATPase. Extensive tryptic digestion followed by centrifugation demonstrates essentially all of the fluorescence was associated with the soluble rather than insoluble (membrane-associated) peptides, confirming the predicted extramembranous location of these residues. Utilizing frequency-domain fluorescence spectroscopy, we were able to recover the transient effects associated with a distribution of donor-acceptor distances. We find from these fluorescence resonance energy transfer measurements that covalently bound maleimide probes are 36 A apart, independent of whether a discrete distance is assumed or a distance distribution model is utilized, in which the conformational variability of the protein is taken into account. While a unimodal distance distribution is adequate to describe the intensity decay associated with maleimide-directed donor-acceptor pairs, a bimodal distribution of distances is necessary to describe the frequency response associated with the energy transfer between maleimide-directed chromophores and other covalently bound probes on the Ca-ATPase, consistent with the large spatial separation observed between maleimides. We recover mean distances of 42 and 77 A between maleimide sites and bound FITC (Lys 515) and mean distances of 28 and 37 A between the maleimide- and the iodoacetamide-directed probes (Cys 670 and 674, whose close proximity approximates a single locus). The measured distances are presented in a model and have permitted us to describe a unique arrangement of these covalently bound probes within both the secondary and tertiary structure of the Ca-ATPase. The resolution inherent in the frequency-domain fluorescence technique to multiple donor-acceptor distances should be generally applicable to a wide range of biological systems in which specific labeling of single unique donor-acceptor sites is not feasible.  相似文献   

4.
5.
High concentration of ATP is found to activate Ca-dependent ATPase from sarcoplasmic reticulum both in membrane fraction and in purified enzyme preparation. The treatment of Ca-ATPase preparation with tripsin results in the elimination of the activating effect of ATP, which is accompanied by the disappearance of 100.000 molecular weight protein and by the appearance of fragments with molecular weight of 45.000 and 55.000. Repeated freezing of the enzyme preparation eliminates activating effect of ATP. ATP action is analysed from the viewpoint of allosteric kinetics, which postulates the existence of two Ca-ATPase conformers, their mutual conversion being induced by ATP binding at allosteric center. Kinetic parameters of the conformers studied are calculated.  相似文献   

6.
Depressed cardiac Ca cycling by the sarcoplasmic reticulum (SR) has been associated with attenuated contractility, which can progress to heart failure. The histidine-rich Ca-binding protein (HRC) is an SR component that binds to triadin and may affect Ca release through the ryanodine receptor. HRC overexpression in transgenic mouse hearts was associated with decreased rates of SR Ca uptake and delayed relaxation, which progressed to hypertrophy with aging. The present study shows that HRC may mediate part of its regulatory effects by binding directly to sarco(endo)plasmic reticulum Ca-ATPase type 2 (SERCA2) in cardiac muscle, which is confirmed by coimmunostaining observed under confocal microscopy. This interaction involves the histidine- and glutamic acid-rich domain of HRC (320-460 aa) and the part of the NH(2)-terminal cation transporter domain of SERCA2 (74-90 aa) that projects into the SR lumen. The SERCA2-binding domain is upstream from the triadin-binding region in human HRC (609-699 aa). Specific binding between HRC and SERCA was verified by coimmunoprecipitation and pull-down assays using human and mouse cardiac homogenates and by blot overlays using glutathione S-transferase and maltose-binding protein recombinant proteins. Importantly, increases in Ca concentration were associated with a significant reduction of HRC binding to SERCA2, whereas they had opposite effects on the HRC-triadin interaction in cardiac homogenates. Collectively, our data suggest that HRC may play a key role in the regulation of SR Ca cycling through its direct interactions with SERCA2 and triadin, mediating a fine cross talk between SR Ca uptake and release in the heart.  相似文献   

7.
The quenching of the intrinsic protein fluorescence of sarcoplasmic reticulum Ca-ATPase from the rabbit skeletal muscles by hydrophylic (NaI, CsCl) or hydrophobic (pyrene, fluorescamine) substances has been studied. CsCl (up to 1 M) has been shown not to affect the intrinsic protein fluorescence while NaI (250 mM) quenches it at 15%, pyrene (8 mkM) decreases the intrinsic fluorescence of Ca-ATPase at 35% and fluorescamine (up to 40 mkM)--at 80%. Possible mechanisms of the interaction of the quenchers with the intrinsic fluorescence of sarcoplasmic reticulum Ca-ATPase are being discussed.  相似文献   

8.
Effect of NaF and AlCl3 the activity of the sarcoplasmic reticulum Ca-ATP-ase has been investigated. NaF (mM) completely inhibits the Ca-ATP-ase activity in presence of 0.02% tween-20. The inhibition is time- and NaF-concentration-dependent and increases as affected by AlCl3 (microM). The potentiated action of AlCl3 depends on the NaF concentration. AlCl3 without NaF does not change the Ca-ATP-ase activity. NaF inhibits the Ca-ATP-ase competitively with respect to ATP, but NaF plus AlCl3 make the inhibition combined. The affinity of the Ca-ATP-ase to the NaF + AlCl3 complex, but not to NaF decreases by 5 mM with an increase of the Pi concentration. NaF probably interacts with the ATP-binding site and the NaF + AlCl3 complex interacts with the phosphate-binding site of the ATP-ase.  相似文献   

9.
Using alamethicin, permitting the measurement of genuine catalytic enzyme activity, hypercholesterolemia was shown to cause a 10-30% reduction of specific Ca-ATPase activity registered at 37 degrees C and the shift of Arrhenius plot in 20-30 degrees C temperature range. Reconstruction of delipidated Ca-ATPase of sarcoplasmic reticulum membranes by egg lecithin in animals with hypercholesterolemia does not lead to the recovery of Arrhenius plot. The data obtained demonstrate that modification of temperature-dependent Ca-ATPase activity in hypercholesterolemia is associated with the changes in the polypeptide with a catalytic function and is not induced by the changes in phospholipid enzyme surroundings.  相似文献   

10.
The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum vesicles was studied in a native and a fluorescein-labeled ATPase preparation (Pick, U., and Karlish, S. J. D. (1980) Biochim. Biophys. Acta 626, 255-261). Vanadate induced a fluorescence enhancement in a fluorescein-labeled enzyme, indicating that it shifts the equilibrium between the two conformational states of the enzyme by forming a stable E2-Mg-vanadate complex (E2 is the low affinity Ca2+ binding conformational state of the sarcoplasmic reticulum Ca-ATPase). Indications for tight binding of vanadate to the enzyme (K1/2 = 10 microM) in the absence of Ca2+ and for a slow dissociation of vanadate from the enzyme in the presence of Ca2+ are presented. The enzyme-vanadate complex was identified by the appearance of a time lag in the onset of Ca2+ uptake and by a slowing of the fluorescence quenching response to Ca2+. Ca2+ prevented the binding of vanadate to the enzyme. Pyrophosphate (Kd = 2 mM) and ATP (Kd = 25 microM) competitively inhibited the binding of vanadate, indicating that vanadate binds to the low affinity ATP binding site. Binding of vanadate inhibited the high affinity Ca2+ binding to the enzyme at 4 degrees C. Vanadate also inhibited the phosphorylation reaction by inorganic phosphate (Ki = 10 microM) but had no effect on the phosphorylation by ATP. It is suggested that vanadate binds to a special region in the low affinity ATP binding site which is exposed only in the E2 conformation of the enzyme in the absence of Ca2+ and which controls the rate of the conformation transition in the dephosphorylated enzyme. The implications of these results to the role of the low affinity ATP binding sites are discussed.  相似文献   

11.
The phenothiazines trifluoroperazine , chlorpromazine and etmozine inhibit Ca-ATPase of the sarcoplasmic reticulum of rabbit skeletal muscles. The inhibitory action decreases in the order of trifluoroperazine greater than chlorpromazine greater than etmozine . The data are provided, indicating that the inhibitory effects of the phenothiazines on Ca-ATPase of the reticulum of the skeletal muscles are not mediated via calmodulin.  相似文献   

12.
The analysis of the present-day concepts on the possible physiological role of the oligomeric organization of Ca-ATPase sarcoplasmic reticulum is given. According to the proposed conception the main functional role of the protein-protein interactions is connected with the possibilities of regulation Ca2+ outflux from the lumens reticulum in the region of interprotein contacts.  相似文献   

13.
Using spin-labeled fatty acid derivatives and maleimide, the effect of temperature on the structural state of various parts of the lipid bilayer of sarcoplasmic reticulum (SR) membranes and the segmental motion of the Ca-ATPase molecule were investigated. The mobility of the spin probes localized in the hydrophobic zone and the outer part of the SR membrane was shown to increase with a rise in temperature from 4 to 44 degrees C, the temperature of 20 degrees C being critical for these changes. In the presence of ATP, critical changes in the spin probe mobility occur at lower temperatures, while in the presence of ATP and Ca2+ they are observed at 20 degrees C for a spin probe localized in the outer part of the SR membrane. The mobility of a spin probe localized in the hydrophobic part of the membrane increases linearly with a rise in temperature. In the absence of ligands, the segmental motion of Ca-ATPase changes linearly within a temperature range of 10-30 degrees C. However, when ATP alone or ATP and Ca2+ are simultaneously added to the incubation mixture, the protein mobility undergoes critical changes at 20 degrees C. The Arrhenius plots for ATPase activity and Ca2+ uptake rate in SR membrane preparations also have a break at 20 degrees C. It is assumed that changes in the structural state of membrane lipids produce conformational changes in the Ca-ATPase molecule; the enzyme seems to be unsensitive to the structural state of the membrane lipid matrix in the absence of the ligands.  相似文献   

14.
Sarcoplasmic reticulum (SR) membranes purified from young adult (4–6 months) and aged (26–28 months) Fischer 344 male rat skeletal muscle were compared with respect to the functional and structural properties of the Ca-ATPase and its associated lipids. While we find no age-related alterations in (1) expression levels of Ca-ATPase protein, and (2) calcium transport and ATPase activities, the Ca-ATPase isolated from aged muscle exhibits more rapid inactivation during mild (37°C) heat treatment relative to that from young muscle. Saturation-transfer EPR measurements of maleimide spin-labeled Ca-ATPase and parallel measurements of fatty acyl chain dynamics demonstrate that, accompanying heat inactivation, the Ca-ATPase from aged skeletal muscle more readily undergoes self-association to form inactive oligomeric species without initial age-related differences in association state of the protein. Neither age nor heat inactivation results in differences in acyl chain dynamics of the bilayer including those lipids at the lipid-protein interface. Initial rates of tryptic digestion associated with the Ca-ATPase in SR isolated from aged muscle are 16( ± 2)% higher relative to that from young muscle, indicating more solvent exposure of a portion of the cytoplasmic domain. During heat inactivation these structural differences are amplified as a result of immediate and rapid further unfolding of the Ca-ATPase isolated from aged muscle relative to the delayed unfolding of the Ca-ATPase isolated from young muscle. Thus age-related alterations in the solvent exposure of cytoplasmic peptides of the Ca-ATPase are likely to be critical to the loss of conformational and functional stability.  相似文献   

15.
Phenothiazines--trifluoperazine, chloropromazine and ethmozine-- inhibit the sarcoplasmic reticulum Ca-ATPase from skeletal and cardiac muscles of the rabbit. The inhibition constants for both preparations are of the same order of magnitude. The experimental data suggest that the effect of phenothiazine on the sarcoplasmic reticulum Ca-ATPase is not mediated by CaM, but is directed toward the enzyme molecule.  相似文献   

16.
17.
The aggregation of the membrane-bound calcium ATPase from sarcoplasmic reticulum has been studied by resonance energy transfer. The temperature dependence of resonance energy transfer from a fluorescent membrane lipid donor to an acceptor covalently linked to the Ca2+ ATPase was observed for the native sarcoplasmic reticulum vesicles and for purified protein reconstituted into phospholipid vesicles. The efficiency of energy transfer in these systems increases as the size of protein aggregates decrease. This is due to the increased exposure of the protein in the lipid domain that results in the shortening of distances between donors and acceptors. The degree of aggregation was observed to decrease with increasing temperature. Aggregates rea h a limiting size at low temperature (5 degrees C) but not a high temperatures (45 degrees C). For the reconstituted system, the aggregate size showed a continuous, smooth decrease with increasing temperature. Sarcoplasmic reticulum vesicles showed a decrease in aggregation except for a region from 20 to 30 degrees C in which no change occurred. Arrhenius plots of the calcium transport activities for both systems do not reflect these differences, but instead show similar discontinuities and activation energies. A theoretical model is used to analyze the resonance energy transfer results for the reconstituted vesicles. The average radius of the ATPase aggregate is obtained from this analysis. The limiting, low temperature value of the aggregate radius is consistent with the formation of a tetramer. This structure breaks down to smaller, functional units at higher temperatures.  相似文献   

18.
The labelling of the sarcoplasmic reticulum membranes by the chemical probes, trinitrobenzenesulfonate (TNBS) and fluorodinitrobenzene (FDNB) has been investigated. The incorporation of TNBS, but not of FDNB, depends on the binding of Ca2+ or Mg2+ to the membranes. The labelling of lipids and of the various reticulum proteins by TNBS is increased by those agents, but the effect is not uniform for all membrane proteins. The Ca2+ -ATPase contributes only 2.2% for the total labelling of the sarcoplasmic reticulum proteins, whereas the proteins of molecular weight 90 000 and 30 000 contribute about 34 and 56%, respectively. However, the Ca2+-ATPase isolated from the membrane reacts with an amount of TNBS 5-fold higher than that which reacts with the enzyme in situ. Both probes, TNBS and FDNB, inhibit the Ca2+-ATPase activity and the Ca2+ uptake by sarcoplasmic reticulum, whereas the Mg2+-ATPase remains unaffected. The results indicate that FDNB is maximally incorporated into the sarcoplasmic reticulum membrane, whereas only some of the membrane amino groups are accessible to TNBS in the absence of Ca2+, Mg2+ or ATP which, when present, make additional amino groups available to TNBS. The highest degree of TNBS incorporation takes place into proteins, other than the ATPase, but sufficient reaction occurs with the enzyme to inhibit its activity.  相似文献   

19.
Transverse tubule (TT) membranes isolated from chicken skeletal muscle possess a very active magnesium-stimulated ATPase (Mg-ATPase) activity. The Mg-ATPase has been tentatively identified as a 102-kD concanavalin A (Con A)-binding glycoprotein comprising 80% of the integral membrane protein (Okamoto, V.R., 1985, Arch. Biochem. Biophys., 237:43-54). To firmly identify the Mg-ATPase as the 102-kD TT component and to characterize the structural relationship between this protein and the closely related sarcoplasmic reticulum (SR) Ca-ATPase, polyclonal antibodies were raised against the purified SR Ca-ATPase and the TT 102-kD glycoprotein, and the immunological relationship between the two ATPases was studied by means of Western immunoblots and enzyme-linked immunosorbent assays (ELISA). Anti-chicken and anti-rabbit SR Ca-ATPase antibodies were not able to distinguish between the TT 102-kD glycoprotein and the SR Ca-ATPase. The SR Ca-ATPase and the putative 102-kD TT Mg-ATPase also possess common structural elements, as indicated by amino acid compositional and peptide mapping analyses. The two 102-kD proteins exhibit similar amino acid compositions, especially with regard to the population of charged amino acid residues. Furthermore, one-dimensional peptide maps of the two proteins, and immunoblots thereof, show striking similarities indicating that the two proteins share many common epitopes and peptide domains. Polyclonal antibodies raised against the purified TT 102-kD glycoprotein were localized by indirect immunofluorescence exclusively in the TT-rich I bands of the muscle cell. The antibodies substantially inhibit the Mg-ATPase activity of isolated TT vesicles, and Con A pretreatment could prevent antibody inhibition of TT Mg-ATPase activity. Further, the binding of antibodies to intact TT vesicles could be reduced by prior treatment with Con A. We conclude that the TT 102-kD glycoprotein is the TT Mg-ATPase and that a high degree of structural homology exists between this protein and the SR Ca-ATPase.  相似文献   

20.
The role of ATP-dependent calcium uptake into intracellular storage compartments is an essential feature of hormonally induced calcium signaling. Thapsigargin, a non-phorboid tumor promoter, increasingly is being used to manipulate calcium stores because it induces a hormone-like elevation of cytosolic calcium. It has been suggested that thapsigargin acts through inhibition of the endoplasmic reticulum calcium pump. We have directly tested the specificity of thapsigargin on all of the known intracellular-type calcium pumps (referred to as the sarcoplasmic or endoplasmic reticulum Ca-ATPase family (SERCA]. Full-length cDNA clones encoding SERCA1, SERCA2a, SERCA2b, and SERCA3 enzymes were expressed in COS cells, and both calcium uptake and calcium-dependent ATPase activity were assayed in microsomes isolated from them. Thapsigargin inhibited all of the SERCA isozymes with equal potency. Furthermore, similar doses of thapsigargin abolished the calcium uptake and ATPase activity of sarcoplasmic reticulum isolated from fast twitch and cardiac muscle but had no influence on either the plasma membrane Ca-ATPase or Na,K-ATPase. The interaction of thapsigargin with the SERCA isoforms is rapid, stoichiometric, and essentially irreversible. These properties demonstrate that thapsigargin interacts with a recognition site found in, and only in, all members of the endoplasmic and sarcoplasmic reticulum calcium pump family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号