首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prominent lesion in DNA exposed to oxidative free radicals results from the degradation of thymine leaving a formamido remnant. A 32P-postlabeling assay has been developed for the detection of the formamido lesion. The assay is based on the circumstance that the lesion prevents hydrolysis by nuclease PI of the phosphoester bond 3' to the damaged nucleoside. Thus, a nuclease PI plus acid phosphatase digest of DNA generates mostly nucleosides whereas the formamido lesion is rendered as a modified dinucleoside monophosphate. Dinucleoside monophosphates, but not nucleosides, are apt substrates for 32P-postlabeling by polynucleotide kinase. The assay was applied to calf thymus DNA X-irradiated in oxygenated solution. The formamido lesion could be detected down to a dose of a few Gy.  相似文献   

2.
Evidence has been accumulating at the oligomer level that free radical-initiated DNA damage includes lesions in which two adjacent bases are both modified. Prominent examples are lesions in which a pyrimidine base is degraded to a formamido remnant and an adjacent guanine base is oxidized. An assay has been devised to detect double-base lesions based on the fact that the phosphoester bond 3' to a nuclesoside bearing the formamido lesion is resistant to hydrolysis by nuclease P1. The residual modified dinucleoside monophosphates obtained from a nuclease P1 (plus acid phosphatase) digest of DNA can be (32)P-postlabeled using T4 polynucleotide kinase. Using this assay the formamido single lesion and the formamido-8-oxoguanine double lesion were detected in calf thymus DNA after X-irradiation in oxygenated aqueous solution. The lesions were measured in the forms d(P(F)pG) and d(P(F)pG(H)), where P(F) stands for a pyrimidine nucleoside having the base degraded to a formamido remnant and G(H) stands for 8-oxo-deoxyguanosine. The yields in calf thymus DNA irradiated 60 Gy were 8.6 and 3.2 pmol/microgram DNA, respectively.  相似文献   

3.
The turnover rates for hydrolysis by nuclease P1 of the 16 unmodified dideoxynucleoside monophosphates were measured. In addition, the turnover rates were measured in a variety of dideoxynucleoside monophosphates containing free radical-induced base modifications. The modified bases included cis-5,6-dihydroxy-5,6-dihydrothymine (thymine glycol), 5,6-dihydrothymine, 5-hydroxymethyuracil, 8-hydroxyguanine, 5-hydroxy-5-methylhydantoin and the formamido remnant which can be derived from either a thymine or a cytosine base. The turnover rate for dinucleoside monophosphates containing 4,8-dihydro-4-hydroxy-8-oxo-guanine modifications, which are induced by singlet oxygen, were also measured. A model was devised for the hydrolysis of DNA by nuclease P1 which uses the observed turnover rates as parameters. The model predicts the abundance of monomers and dimers as hydrolysis proceeds. Whereas the level of monomers increases monotonically, the level of each dimer first increases and then falls off. There are advantages to phosphorylating dimers, as compared with monomers, using polynucleotide kinase. Consequently this model may be of interest in connection with 32P-postlabeling applied to the measurement of DNA damage in nuclease P1 partial hydrolysates of DNA.  相似文献   

4.
DNA X-irradiated in oxygenated aqueous solution produces the formamido lesion from the breakdown of pyrimidine nucleosides. This pyrimidine breakdown product inhibits the hydrolysis by nuclease P1 of the phosphoester bond 3' to the damaged nucleoside. Consequently, the lesion can be obtained from an enzymatic digest of the DNA as a modified dinucleoside monophosphate in which the 5' nucleoside contains the lesion. In this form, the formamido lesion can be detected with good sensitivity by liquid chromatography-mass spectrometry (LC-MS). Nucleosides that have lost the base moiety also inhibit nuclease P1. Together, the formamido and abasic lesions account for all of the substantial peaks in the LC-MS ion current profile.  相似文献   

5.
The dinucleoside monophosphates d(TpG), d(TpC), and d(TpT) were X-irradiated in oxygenated solution. In each case the modification of the dinucleoside in which the thymine base is degraded to a formamido remnant was observed as a principal product. The hydrolysis of the phosphoester bond of formamido-modified dinucleosides is much slower than that of the corresponding unmodified dinucleosides. This effect is also observable in the hydrolysis of irradiated DNA, where hydrolysis by nuclease P1 (plus acid phosphatase) generates the modified dinucleosides d(TFpN), TF being the modified thymidine. The total yield of the formamido lesion in all its forms, d(TFpN), exceeds the yield of any other base modification.  相似文献   

6.
The UvrABC nuclease complex recognizes a wide spectrum of DNA lesions including pyrimidine dimers, bulky chemical adducts and O6-methylguanine. In this study we have demonstrated that the UvrABC complex is also able to incise PM2 DNA containing the oxidative DNA lesion, thymine glycol. However, DNA containing dihydrothymine, a lesion with a similar structure to thymine glycol, was not incised. The UvrABC complex was also able to incise DNA containing reduced apurinic sites or apurinic sites modified with O-alkyl hydroxylamines, but not DNA containing apurinic sites or urea residues. In vivo, in the absence of base-excision repair, nucleotide excision repair was operable on phi X-174 RF transfecting DNA containing thymine glycols. The level of the repair was found to be directly related to the level of the UvrABC complex. Thus, UvrABC-mediated nucleotide excision repair appears to play a role in the repair of thymine glycol, an oxidative DNA-base lesion that is produced by ionizing radiation or formed during oxidative respiration.  相似文献   

7.
In order to study the relationship between the level of acrolein-DNA adducts and their biological effects, sensitive methods are needed to quantitate DNA adducts. 32P-postlabeling is one such method that has been widely used and we have adapted the technique to detect acrolein-deoxyguanosine adducts. Adducts formed by the reaction of acrolein and deoxyguanosine-3'-monophosphate were isolated by HPLC. Based on their UV spectra and cochromatography with standards after dephosphorylation with acid phosphatase, these adducts were identified as the nucleotide equivalents of cyclic 1,N2-propanodeoxyguanosine adducts formed by acrolein that have been described by Chung et al. [15]. As nucleotides, the adducts were good substrates for polynucleotide kinase-mediated transfer of phosphate from ATP and were able to be detected by 32P-postlabeling. These adducts were resistant to the activity of nuclease P1 and dinucleoside monophosphates in the form d(G*pN) where G* is the acrolein-guanine adduct also resisted digestion by nuclease P1. Digestion of DNA by nuclease P1 and acid phosphatase resulted in the conversion of normal nucleotides to nucleosides and selective enrichment of the adducts as dinucleoside monophosphates. Using nuclease P1/acid phosphatase digestion, followed by 32P-postlabeling and TLC separation, levels of the two adducts in acrolein-treated DNA were found to be about 6185 and 19,222 nmol/mol.  相似文献   

8.
A 32-P-postlabeling assay has been developed that permits detection of several radiogenic base and sugar lesions of DNA at the femtomole level. The technique is based on the inability of DNase I and snake venom phosphodiesterase to cleave the internucleotide phosphodiester bond immediately 5' to the site of damage so that complete digestion of irradiated DNA with these nucleases and alkaline phosphatase yields lesion-bearing "dinucleoside" monophosphates. Because these fragments contain an unmodified nucleoside at the 5'-end of each molecule, they can be readily phosphorylated by T4 polynucleotide kinase and [gamma-32P]ATP and analyzed by polyacrylamide gel electrophoresis and reverse-phase HPLC. We observed a linear induction of total damage in DNA irradiated with 5-50 Gy. Virtually no damage was detected when the DNA was irradiated in solution containing 1 M DMSO, implicating hydroxyl radicals in the formation of these lesions. Evidence for the presence of thymine glycols and phosphoglycolate groups came from (i) a comparison of the radiation-induced products with those produced by OsO4 and KMnO4 and (ii) incubation of irradiated DNA with Escherichia coli endonuclease III and exonuclease III before analysis by the postlabeling procedure. This was confirmed by comigration of the radiogenic products with chemically synthesized markers. G values of 0.0022 and 0.0105 mumol J-1 were obtained for thymine glycol and phosphoglycolate production, respectively. The identity of the 5'-nucleotide of each isolated compound was obtained by nuclease P1 digestion. This analysis of nearest-neighbor bases to thymine glycols and phosphoglycolates indicated a nonrandom interaction between radiation-induced hydroxyl radicals and DNA.  相似文献   

9.
Mitochondrial DNA is exposed to oxygen radicals produced during oxidative phosphorylation. Accumulation of several kinds of oxidative lesions in mitochondrial DNA may lead to structural genomic alterations, mitochondrial dysfunction, and associated degenerative diseases. The pyrimidine hydrate thymine glycol, one of many oxidative lesions, can block DNA and RNA polymerases and thereby exert negative biological effects. Mitochondrial DNA repair of this lesion is important to ensure normal mitochondrial DNA metabolism. Here, we report the purification of a novel rat liver mitochondrial thymine glycol endonuclease (mtTGendo). By using a radiolabeled oligonucleotide duplex containing a single thymine glycol lesion, damage-specific incision at the modified thymine was observed upon incubation with mitochondrial protein extracts. After purification using cation exchange, hydrophobic interaction, and size exclusion chromatography, the most pure active fractions contained a single band of approximately 37 kDa on a silver-stained gel. MtTGendo is active within a broad KCl concentration range and is EDTA-resistant. Furthermore, mtTGendo has an associated apurinic/apyrimidinic-lyase activity. MtTGendo does not incise 8-oxodeoxyguanosine or uracil-containing duplexes or thymine glycol in single-stranded DNA. Based upon functional similarity, we conclude that mtTGendo may be a rat mitochondrial homolog of the Escherichia coli endonuclease III protein.  相似文献   

10.
11.
Single-strand circular DNA from bacteriophage M13mp9 was chemically modified with osmium tetroxide to introduce specifically cis-thymine glycol lesions, a major type of DNA damage produced by ionizing radiation. An oligonucleotide primer was extended on damaged and undamaged templates using either the large fragment of E. coli pol I or T4 DNA polymerase. The reaction products were analysed by electrophoresis alongside a DNA sequence ladder. Synthesis on the damaged templates terminated at positions opposite thymine bases in the template. These results indicate that cis-thymine glycol lesions in single-strand DNA constitute blocks to synthesis by DNA polymerases in vitro. Surprisingly, replication halts after the correct nucleotide, dAMP, is inserted opposite the lesion. These results imply that the primary effect of the thymine glycol lesion is suppression of DNA synthesis and that the lesion is not a potent mutagen.  相似文献   

12.
Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro   总被引:8,自引:0,他引:8  
J M Clark  G P Beardsley 《Biochemistry》1987,26(17):5398-5403
  相似文献   

13.
14.
A functional homologue of human DNA glycosylase NEIL1 (hNEIL1) in mouse has recently been cloned, isolated, characterized, and named mouse NEIL1 (mNEIL1). This enzyme exhibited specificity for excision of oxidatively modified pyrimidine bases such as thymine glycol, 5,6-dihydrouracil, and 5-hydroxypyrimidines, using oligonucleotides with a single base lesion incorporated at a specific site. It also acted upon AP sites; however, no significant excision of 8-hydroxyguanine was observed [Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., and Grollman, A. P. (2003) DNA Repair 2, 581-591]. We investigated the substrate specificity and excision kinetics of mNEIL1 for excision of oxidatively modified bases from high-molecular weight DNA with multiple lesions, which were generated by exposure of DNA in aqueous solution to ionizing radiation. Among a large number of pyrimidine- and purine-derived lesions detected and quantified in DNA, only purine-derived lesions 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine were significantly excised. This finding establishes that mNEIL1 and its functional homologue hNEIL1 possess common substrates, namely, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine. Measurement of excision kinetics showed that mNEIL1 possesses equal specificity for these two formamidopyrimidines. This enzyme also excised thymine-derived lesions thymine glycol and 5-hydroxy-5-methylhydantoin, albeit at a much lower rate. A comparison of the specificity and excision kinetics of mNEIL1 with other DNA glycosylases shows that this enzyme is as efficient as those DNA glycosylases, which specifically remove the formamidopyrimidines from DNA.  相似文献   

15.
16.
The mechanisms of the hepatocarcinogenicity of non-mutagenic peroxisome proliferators, i.e. compounds used as hypolipidemic drugs and industrial plasticizers, are not sufficiently understood. To gain more information on the mechanism of their action, the chronic effects of two structurally diverse peroxisome proliferators on rat-liver DNA were investigated by the 32P-postlabeling assay. Male F-344 rats (1.5 month old) were fed ciprofibrate (0.025%) in the diet for 2, 5, 8, and 16 months or Wy-14643 (0.1%) for 18 months. Liver DNA from individual treated animals (3-4 per group) and age-matched controls was analyzed by the nuclease P1/bisphosphate version of the 32P-postlabeling assay. Three distinct types of exposure-related DNA alterations were observed: (i) A significant reduction of the age-dependent accumulation of I-compounds (putative indigenous DNA modifications) (type 1), (ii) adduct-like DNA derivatives induced by the treatments (type 2), and (iii) as yet structurally uncharacterized radiolabeled material occupying substantial areas of DNA adduct maps and accumulating in an exposure time-dependent manner (type 3). DNA from liver tumors generated by these agents displayed only traces of I-compounds, lacked all but one adduct-like derivatives, and had no type 3 alterations. Thus, in contrast to the non-mutagenicity of peroxisome proliferators in short-term assays, chronic administration of these compounds led to DNA alterations that were detectable by 32P-postlabeling assay.  相似文献   

17.
Using the 32P-postlabeling assay, we investigated the ability of quaternary benzo[c]phenanthridine alkaloids, sanguinarine, chelerythrine and fagaronine, to form DNA adducts in vitro. Two enhanced versions of the assay (enrichment by nuclease P1 and 1-butanol extraction) were utilized in the study. Hepatic microsomes of rats pre-treated with beta-naphthoflavone or those of uninduced rats, used as metabolic activators, were incubated in the presence of calf thymus DNA and the alkaloids, with NADPH used as a cofactor. Under these conditions sanguinarine and chelerythrine, but not fagaronine, formed DNA adducts detectable by 32P-postlabeling. DNA adduct formation by both alkaloids was found to be concentration dependent. When analyzing different atomic and bond indices of the C11-C12 bond (ring B) in alkaloid molecules we found that fagaronine behaved differently from sanguinarine and chelerythrine. While sanguinarine and chelerythrine showed a preference for electrophilic attack indicating higher potential to be activated by cytochrome P450, fagaronine exhibited a tendency for nucleophilic attack. Our results demonstrate that sanguinarine and chelerythrine are metabolized by hepatic microsomes to species, which generate DNA adducts.  相似文献   

18.
Computer graphics and energy minimization techniques were used to construct a model of DNA containing cis-thymine glycol, an oxidation product of thymine formed in DNA by ionizing radiation. The model simulated an experimental DNA substrate used to study the effects of this lesion on DNA synthesis in vitro. The results derived from the model indicate that cis-thymine glycol lesions introduce localized perturbations of DNA structure. Specifically the model shows that interactions with the neighboring base pair on the 5' side are significantly destabilized by thymine glycol whereas interactions with the 3' base pair are stabilized by the lesion. The magnitude of these effects is modulated by the nucleotide sequence around the lesion, particularly by the nature of the base on the 3' side. The base pair formed between adenine and thymine glycol is energetically stable and shows minimal distortion, suggesting that this lesion retains the ability to direct the insertion of the correct nucleotide during DNA synthesis.  相似文献   

19.
UVC-radiation-induced DNA damage was measured in mouse fibroblast cells using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with isotopically labeled internal standards. The thymine glycol and formamide lesions were assayed in the form of modified dinucleoside monophosphates. The 8-oxo-7,8-dihydroguanine lesion was measured as the modified nucleoside. DNA damage in cells treated with tirapazamine was also measured. Tirapazamine is a chemotherapeutic agent that acts via a free radical mechanism. The two agents, UVC radiation and tirapazamine, produce markedly different profiles of DNA damage, reflecting their respective mechanisms of action. Both agents produce significant amounts of thymine glycol and formamide damage, but only the former produced a measurable amount of the 8-oxo-7,8-dihydroguanine lesion. The merits of measuring DNA damage at the dimer level are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号