首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As we enter the 21st century, the segment of the population that is the most rapidly expanding is that comprised of individuals 85 yr of age and older. Dysfunctions of the gastrointestinal (GI) system, including dysphagia, constipation, diarrhea, and irritable bowel syndrome are more common complaints of the elderly, yet our knowledge of the aging GI tract is incomplete. Compared with the rapid advances in the neurobiology of aging in the central nervous system, the understanding of age-related changes in the enteric nervous system (ENS) is poor. In this brief review, I recap experiments that reveal neurodegenerative changes and their functional correlates in the ENS of mice, rats, and guinea pigs. Clinical literature seems indicative of similar structural and functional age-related changes in the human ENS. Current studies that address the mechanisms underlying age-related changes in the ENS are introduced. The future directions for this field include physiological and pharmacological studies, especially at cellular and molecular levels. Research in the aging ENS is poised to make major advances, and this new knowledge will be useful for clinicians seeking to better understand and treat GI dysfunction in the elderly.  相似文献   

2.
Monitoring membrane potentials by multisite optical recording techniques using voltage-sensitive dyes is ideal for direct analysis of network signaling. We applied this technology to monitor fast and slow excitability changes in the enteric nervous system and in hundreds of neurons simultaneously at cellular and subcellular resolution. This imaging technique presents a powerful tool to study activity patterns in enteric pathways and to assess differential activation of nerves in the gut to a number of stimuli that modulate neuronal activity directly or through synaptic mechanisms. The optical mapping made it possible to record from tissues such as human enteric nerves, which were, until now, inaccessible by other techniques.  相似文献   

3.
The gastrointestinal motility changes that occur as a function of age are reviewed herein. Careful attention must be given in any review of aging phenomena to exclude, or at least be cognizant of, the many comorbid conditions that can alter physiological functioning in older adults. The dramatic increase in life expectancy over the past 10-15 years demands that clinicians be aware of the various physiological and clinically relevant changes that occur with age. Gastrointestinal motility changes associated with age are relatively subtle, and in many instances only conflicting data exist. As the older adult population increases, and as the control of disease is improved, much more work needs to be done to understand the true effects of aging on gastrointestinal functioning.  相似文献   

4.
The enteric nervous system, the intrinsic innervation of the gastrointestinal tract, consists of large numbers of phenotypically diverse neurons and glial cells, arranged in complex interconnecting plexuses situated between the smooth muscle layers of the gut wall. Recently, the enteric nervous system has attracted much attention from developmental biologists whose efforts have focused on analysing the cellular origins of enteric nervous system precursor cells, how these cells migrate to and within the gut and the identification of signalling mechanisms which cause migrating cells to differentiate into the appropriate phenotypes in the appropriate locations. This review summarises the state of knowledge concerning the early stages of enteric nervous system development and concentrates on: (i) the embryological origins of the neural crest cells which colonise the gastrointestinal tract, (ii) their spatiotemporal migration within the gut, (iii) the possible pre-specification of neural crest cells as enteric nervous system precursors and (iv) factors influencing their directional migration within the gut.  相似文献   

5.
The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development. The observation that an overabundance of laminin develops in the presumptive aganglionic region of the gut in Is/Is mutant mice and is associated with the inability of crest-derived cells to colonize this region of the bowel has led to the hypothesis that laminin promotes the development of crest-derived cells as enteric neurons. Premature expression of a neuronal phenotype would cause crest-derived cells to cease migrating before they complete the colonization of the gut. The acquisition by crest-derived cells of a nonintegrin, nervespecific, 110 kD laminin-binding protein when they enter the bowel may enable these cells to respond to laminin differently from their pre-enteric migrating predecessors. Crest-derived cells migrating along the vagal pathway to the mammalian gut are transiently catecholaminergic (TC). This phenotype appears to be lost rapidly as the cells enter the bowel and begin to follow their program of terminal differentiation. The appearance and disappearance of TC cells may thus be an example of the effects of the enteric microenvironment on the differentiation of crest-derived cells in situ. Crest-derived cells can be isolated from the enteric microenvironment by immunoselection, a method that takes advantage of the selective expression on the surfaces of crest-derived cells of certain antigens. One neurotrophin, NT-3, promotes the development of enteric neurons and glia in vitro. Because trkC is expressed in the developing and mature gut, it seems likely that NT-3 plays a critical role in the development of the ENS in situ. Although the factors that are responsible for the development of the unique properties of the ENS remain unknown, progress made in understanding enteric neuronal development has recently accelerated. The application of new techniques and recently developed probes suggest that the accelerated pace of discovery in this area can be expected to continue. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The enteric nervous system (ENS) of the moth Manduca sexta is organized into two distinct cellular domains: an anterior domain that includes several small ganglia on the surface of the foregut, and a more posterior domain consisting of a branching nerve plexus (the enteric plexus) that spans the foregut-midgut boundary. Previously, we showed that the neurons of the posterior domain, the enteric plexus, are generated from a large placode that invaginates from the caudal lip of the foregut; subsequently, the cells become distributed throughout the enteric plexus by a sequence of active migration. We now demonstrate that the neurons of the anterior domain, the cells of the enteric ganglia, arise via a distinct developmental sequence. Shortly after the foregut has begun to form, three neurogenic zones differentiate within the foregut epithelium and give rise to chains of cells that emerge onto the foregut surface. The three zones are not sites of active mitosis, as indicated by the absence of labelling with a thymidine analogue and by clonal analyses using intracellularly injected dyes. Rather, the zones serve as loci through which epithelial cells are recruited into a sequence of delamination and neuronal differentiation. As they emerge from the epithelium, the cells briefly become mitotically active, each cell dividing once or twice. In this manner, they resemble the midline precursor class of neural progenitors in the insect central nervous system more than neuroblast stem cells. The progeny of these zone-derived precursors then gradually coalesce into the ganglia and nerves of the anterior ENS. Although this reorganization results in some variability in the precise configuration of neurons within the ganglia, the overall morphology of the ganglia is highly stereotyped, consisting of cortical layers of cells that surround a ventral neuropil. In addition, a number of the neurons within the frontal and hypocerebral ganglia express identifiable phenotypes in a manner that is similar to many cells of the insect central nervous system. These observations indicate that the differentiation of the enteric ganglia in Manduca involves an unusual combination of features seen during the formation of other regions of the nervous system and, as such, constitutes a distinct program of neurogenesis.  相似文献   

7.
DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.  相似文献   

8.
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.  相似文献   

9.
Neural crest cells (NCC) migrate, proliferate, and differentiate within the wall of the gastrointestinal tract to give rise to the neurons and glial cells of the enteric nervous system (ENS). The intestinal microenvironment is critical in this process and endothelin-3 (ET3) is known to have an essential role. Mutations of this gene cause distal intestinal aganglionosis in rodents, but its mechanism of action is poorly understood. We find that inhibition of ET3 signaling in cultured avian intestine also leads to hindgut aganglionosis. The aim of this study was to determine the role of ET3 during formation of the avian hindgut ENS. To answer this question, we created chick-quail intestinal chimeras by transplanting preganglionic quail hindguts into the coelomic cavity of chick embryos. The quail grafts develop two ganglionated plexuses of differentiated neurons and glial cells originating entirely from the host neural crest. The presence of excess ET3 in the grafts results in a significant increase in ganglion cell number, while inhibition of endothelin receptor-B (EDNRB) leads to severe hypoganglionosis. The ET3-induced hyperganglionosis is associated with an increase in enteric crest cell proliferation. Using hindgut explants cultured in collagen gel, we find that ET3 also inhibits neuronal differentiation in the ENS. Finally, ET3, which is strongly expressed in the ceca, inhibits the chemoattraction of NCC to glial-derived neurotrophic factor (GDNF). Our results demonstrate multiple roles for ET3 signaling during ENS development in the avian hindgut, where it influences NCC proliferation, differentiation, and migration.  相似文献   

10.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

11.
The human central nervous system (CNS) is targeted by diverse pathogens that use distinct pathways to bypass the blood-brain barrier, such as trafficking into the brain via infected blood cells or using retrograde axonal transport through sensory or motor fibers. Prions are transmissible agents that induce a devastating subacute neurodegeneration when they successfully reach the CNS. Two recent studies focusing on pathways of prion neuroinvasion provide converging evidence that, in the case of peripheral transmission, such as human consumption of contaminated tissue, the infectious agent uses the sympathetic noradrenergic neurons to reach the CNS after early replication in lymphoid tissues.  相似文献   

12.
Positional information is fundamental in development. Although molecular gradients are thought to represent positional information in various systems, the molecular logic used to interpret these gradients remains controversial. In the nervous system, sensory maps are formed in the brain based on gradients of axon guidance molecules. However, it remains unclear how axons find their targets based on relative, not absolute, expression levels of axon guidance receptors. No model solely based on axon-target interactions explains this point. Recent studies in the olfactory system suggested that the neural map formation requires axon-axon interactions, which is known as axon sorting. This review discusses how axon-axon and axon-target interactions interpret molecular gradients and determine the axonal projection sites in neural map formation.  相似文献   

13.
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.  相似文献   

14.
The enteric nervous system (ENS) is mainly derived from vagal neural crest cells (NCC) that arise at the level of somites 1-7. To understand how the size and composition of the NCC progenitor pool affects ENS development, we reduced the number of NCC by ablating the neural tube adjacent to somites 3-6 to produce aganglionic gut. We then back-transplanted various somite lengths of quail neural tube into the ablated region to determine the 'tipping point', whereby sufficient progenitors were available for complete ENS formation. The addition of one somite length of either vagal, sacral or trunk neural tube into embryos that had the neural tube ablated adjacent to somites 3-6, resulted in ENS formation along the entire gut. Although these additional cells contributed to the progenitor pool, the quail NCC from different axial levels retained their intrinsic identities with respect to their ability to form the ENS; vagal NCC formed most of the ENS, sacral NCC contributed a limited number of ENS cells, and trunk NCC did not contribute to the ENS. As one somite length of vagal NCC was found to comprise almost the entire ENS, we ablated all of the vagal neural crest and back-transplanted one somite length of vagal neural tube from the level of somite 1 or somite 3 into the vagal region at the position of somite 3. NCC from somite 3 formed the ENS along the entire gut, whereas NCC from somite 1 did not. Intrinsic differences, such as an increased capacity for proliferation, as demonstrated in vitro and in vivo, appear to underlie the ability of somite 3 NCC to form the entire ENS.  相似文献   

15.
Expression of P2X4 and P2X6 receptor subunits in the gastrointestinal tract of the rat was studied with double-labeling fluorescence immunohistochemistry. The results showed that P2X6 receptors were expressed widely in the submucosal and myenteric plexuses. In the myenteric plexus, P2X6 receptors were expressed mainly in large size neurons which resembled Dogiel type II neurons. These P2X6 receptor-immunoreactive (ir) neurons also expressed calbindin 28K, calretinin and neuronal nuclei (NeuN), proteins that are markers of intrinsic sensory neurons. In the submucosal plexus, all the calbindin 28K, calretinin and NeuN-ir cells were immunoreactive for P2X6 receptors. P2X6 receptors do not form homomultimers, but rather heteromultimers with either P2X2 or P2X4 receptors. P2X4 receptors were not expressed in neurons, but were expressed in macrophages of the rat gastrointestinal tract. These data indicate that P2X6 receptors are mainly expressed on intrinsic sensory neurons and that ATP, via P2X6 receptors probably in heteromeric combination with P2X2 receptors, may be involved in regulating the physiological functions of these neurons.  相似文献   

16.
The enteric nervous system (ENS) is derived from neural crest cells that migrate along the gastrointestinal tract to form a network of neurons and glia that are essential for regulating intestinal motility. Despite the number of genes known to play essential roles in ENS development, the molecular etiology of congenital disorders affecting this process remains largely unknown. To determine the role of bone morphogenetic protein (BMP) signaling in ENS development, we first examined the expression of bmp2, bmp4, and bmprII during hindgut development and find these strongly expressed in the ENS. Moreover, functional BMP signaling, demonstrated by the expression of phosphorylated Smad1/5/8, is present in the enteric ganglia. Inhibition of BMP activity by noggin misexpression within the developing gut, both in ovo and in vitro, inhibits normal migration of enteric neural crest cells. BMP inhibition also leads to hypoganglionosis and failure of enteric ganglion formation, with crest cells unable to cluster into aggregates. Abnormalities of migration and ganglion formation are the hallmarks of two human intestinal disorders, Hirschsprung's disease and intestinal neuronal dysplasia. Our results support an essential role for BMP signaling in these aspects of ENS development and provide a basis for further investigation of these proteins in the etiology of neuro-intestinal disorders.  相似文献   

17.
The Notch signaling pathway is a vitally important pathway in regulating brain development. To explore the involvement of the Notch pathway in neuronal cells of adult rat gut, we investigated the expression of Notch1 and Jagged2 by in situ hybridization (ISH) and immunohistochemistry (IHC). In the enteric nervous system, Notch1 and Jagged2 were expressed in ganglia of the submucosal and myenteric plexus. Notch1 was preferentially expressed in cholinergic neurons lacking calretinin or nitric oxide synthase (NOS), whereas Jagged2 was present in most neuron subtypes. We propose that Notch1 and Jagged2 have a continuing role in the maintenance and function of neuronal cells in the adult enteric nervous system.  相似文献   

18.
The generation of functional neuromuscular activity within the pre-natal gastrointestinal tract requires the coordinated development of enteric neurons and glial cells, concentric layers of smooth muscle and interstitial cells of Cajal (ICC). We investigated the genesis of these different cell types in human embryonic and fetal gut material ranging from weeks 4–14. Neural crest cells (NCC), labelled with antibodies against the neurotrophin receptor p75NTR, entered the foregut at week 4, and migrated rostrocaudally to reach the terminal hindgut by week 7. Initially, these cells were loosely distributed throughout the gut mesenchyme but later coalesced to form ganglia along a rostrocaudal gradient of maturation; the myenteric plexus developed primarily in the foregut, then in the midgut, and finally in the hindgut. The submucosal plexus formed approximately 2–3 weeks after the myenteric plexus, arising from cells that migrated centripetally through the circular muscle layer from the myenteric region. Smooth muscle differentiation, as evidenced by the expression of -smooth muscle actin, followed NCC colonization of the gut within a few weeks. Gut smooth muscle also matured in a rostrocaudal direction, with a large band of -smooth muscle actin being present in the oesophagus at week 8 and in the hindgut by week 11. Circular muscle developed prior to longitudinal muscle in the intestine and colon. ICC emerged from the developing gut mesenchyme at week 9 to surround and closely appose the myenteric ganglia by week 11. By week 14, the intestine was invested with neural cells, longitudinal, circular and muscularis mucosae muscle layers, and an ICC network, giving the fetal gut a mature appearance.A.S.W. is funded by a PhD studentship awarded to A.J.B. by the Child Health Research Appeal Trust.  相似文献   

19.
The goal of this report is to summarise the current knowledge on the projection pathways of enteric neurones innervating the muscle and mucosa in different regions of the gut. Combination of neuronal tracing, immunohistochemical and electrophysiological methods has allowed researchers to gain insight into the enteric hardwiring of specific target tissue in the gut. A polarised innervation pattern of the circular muscle was demonstrated for the stomach fundus/corpus and the ileum with descending pathways being primarily nitrergic while ascending pathways were primarily cholinergic. This characteristic hardwiring is thought to set in part the functional basis for peristalsis. A similar polarised innervation pathway was found for the enteric innervation of the mucosa in the stomach and large intestine but not in the small intestine. In both the stomach (myenteric neurones) and in the proximal and distal colon (submucosal neurones), ascending pathways to the mucosa are primarily cholinergic while descending pathways are primarily non-cholinergic. In the colon, results suggest that activation of both pathways induces a cross potentiation of cholinergic and vasoactive intestinal polypeptidergic mediated secretion. Furthermore, a large population of myenteric neurone s projecting to the mucosa in the small and large intestine are probably intrinsic primary afferent neurones sensitive to mechanical as well as chemical stimuli.  相似文献   

20.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号