首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular identity of the apical HCO3(-)-secreting transporter in gastric mucous cells remains unknown despite its essential role in preventing injury and ulcer by gastric acid. Here we report the identification of a Cl-/HCO3- exchanger that is located on apical membranes of gastric surface epithelial cells. RT-PCR studies of mouse gastrointestinal tract mRNAs demonstrated that this transporter, known as anion exchanger isoform 4 (AE4), is expressed in both stomach and duodenum. Northern blot analysis of RNA from purified stomach epithelial cells indicated that AE4 is expressed at higher levels in mucous cells than in parietal cells. Immunoblotting experiments identified AE4 as a approximately 110- to 120-kDa protein in membranes from stomach epithelium and apical membranes from duodenum. Immunocytochemical staining demonstrated that AE4 is expressed in apical membranes of surface cells in both mouse and rabbit stomach and duodenum. Functional studies in oocytes indicated that AE4 functions as a Cl-/HCO3- exchanger. These data show that AE4 is an apical Cl-/HCO3- exchanger in gastric mucous cells and duodenal villus cells. On the basis of its function and location, we propose that AE4 may play an important role in mucosal protection.  相似文献   

2.
The basolateral Cl(-)/HCO(3)(-) exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H(+)-K(+)-ATPase. Here, we report the identification of a new Cl(-)/HCO(3)(-) exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl(-)/HCO(3)(-) exchanger that is active in both acidic and alkaline pH(i). On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl(-)/HCO(3)(-) exchanger in gastric parietal cells and plays a major role in gastric acid secretion.  相似文献   

3.
The AE2 Cl-/HCO3- exchanger is expressed in numerous cell types, including epithelial cells of the kidney, respiratory tract, and alimentary tract. In gastric epithelia, AE2 is particularly abundant in parietal cells, where it may be the predominant mechanism for HCO3- efflux and Cl- influx across the basolateral membrane that is needed for acid secretion. To investigate the hypothesis that AE2 is critical for parietal cell function and to assess its importance in other tissues, homozygous null mutant (AE2(-/-)) mice were prepared by targeted disruption of the AE2 (Slc4a2) gene. AE2(-/-) mice were emaciated, edentulous (toothless), and exhibited severe growth retardation, and most of them died around the time of weaning. AE2(-/-) mice exhibited achlorhydria, and histological studies revealed abnormalities of the gastric epithelium, including moderate dilation of the gastric gland lumens and a reduction in the number of parietal cells. There was little evidence, however, that parietal cell viability was impaired. Ultrastructural analysis of AE2(-/-) gastric mucosa revealed abnormal parietal cell structure, with severely impaired development of secretory canaliculi and few tubulovesicles but normal apical microvilli. These results demonstrate that AE2 is essential for gastric acid secretion and for normal development of secretory canalicular and tubulovesicular membranes in mouse parietal cells.  相似文献   

4.
Ion transporters play a central role in gastric acid secretion. To determine whether some of these transporters are necessary for the normal ultrastructure of secretory membranes in gastric parietal cells, mice lacking transporters for H+, K+, Cl-, and Na+ were examined for alterations in volume density (Vd) of basolateral, apical, tubulovesicular and canalicular membranes, microvillar dimensions, membrane flexibility, and ultrastructure. In mice lacking Na+/H+ exchanger 1 (NHE1) or the Na+-K+-2Cl- cotransporter (NKCC1), the ultrastructure and Vd of secretory membranes and the secretory canalicular to tubulovesicular membrane ratio (SC/TV), a morphological correlate of secretory activity, were similar to those of wild-type mice. In mice lacking Na+/H+ exchanger 2 (NHE2) or gastric H+, K+ -ATPase alpha- or beta-subunits, the SC/TV ratio and Vd of secretory membranes were decreased, though canaliculi were often dilated. In H+, K+ -ATPase-deficient parietal cells, canalicular folds were decreased, normally abundant tubulovesicles were replaced with a few rigid round vesicles, and microvilli were sparse, stiff and short, in contrast to the long and flexible microvilli in wild-type cells. In addition, microvilli of the H+, K+ -ATPase-deficient parietal cells had centrally bundled F-actin filaments, unlike the microvilli of wild-type cells, in which actin filaments were peripherally positioned concentric to the plasmalemma. Data showed that the absence of H+, K+ -ATPase produced fundamental changes in parietal cell membrane ultrastructure, suggesting that the pump provides an essential link between the membranes and F-actin, critical to the gross architecture and suppleness of the secretory membranes.  相似文献   

5.
The NHE4 Na+/H+ exchanger is abundantly expressed on the basolateral membrane of gastric parietal cells. To test the hypothesis that it is required for normal acid secretion, NHE4-null mutant (NHE4-/-) mice were prepared by targeted disruption of the NHE4 (Slc9a4) gene. NHE4-/- mice survived and appeared outwardly normal. Analysis of stomach contents revealed that NHE4-/- mice were hypochlorhydric. The reduction in acid secretion was similar in 18-day-old, 9-week-old, and 6-month-old mice, indicating that the hypochlorhydria phenotype did not progress over time, as was observed in mice lacking the NHE2 Na+/H+ exchanger. Histological abnormalities were observed in the gastric mucosa of 9-week-old NHE4-/- mice, including sharply reduced numbers of parietal cells, a loss of mature chief cells, increased numbers of mucous and undifferentiated cells, and an increase in the number of necrotic and apoptotic cells. NHE4-/- parietal cells exhibited limited development of canalicular membranes and a virtual absence of tubulovesicles, and some of the microvilli had centrally bundled actin. We conclude that NHE4, which may normally be coupled with the AE2 Cl-/HCO3- exchanger, is important for normal levels of gastric acid secretion, gastric epithelial cell differentiation, and development of secretory canalicular and tubulovesicular membranes.  相似文献   

6.
HCO3(-) secretion is the most important defense mechanism against acid injury in the duodenum. However, the identity of the transporter(s) mediating apical HCO3(-) secretion in the duodenum remains unknown. A family of anion exchangers, which include downregulated in adenoma (DRA or SLC26A3), pendrin (PDS or SLC26A4), and the putative anion transporter (PAT1 or SLC26A6) has recently been identified. DRA and pendrin mediate Cl(-)/base exchange; however, the functional identity and distribution of PAT1 (SLC26A6) is not known. In these studies, we investigated the functional identity, tissue distribution, and membrane localization of PAT1. Expression studies in Xenopus oocytes demonstrated that PAT1 functions in Cl(-)/HCO3(-) exchange mode. Tissue distribution studies indicated that the expression of PAT1 is highly abundant in the small intestine but is low in the colon, a pattern opposite that of DRA. PAT1 was also abundantly detected in stomach and heart. Immunoblot analysis studies identified PAT1 as a approximately 90 kDa protein in the duodenum. Immunohistochemical studies localized PAT1 to the brush border membranes of the villus cells of the duodenum. We propose that PAT1 is an apical Cl(-)/HCO3(-) exchanger in the small intestine.  相似文献   

7.
Sonic hedgehog (Shh) is found within gastric parietal cells and processed from a 45-kDa to a 19-kDa bioactive protein by an acid- and protease-dependent mechanism. To investigate whether Shh is associated with the parietal cell membrane compartment that becomes exposed to both acid and proteolytic enzymes during acid secretion, the cellular location of Shh within resting and stimulated gastric parietal cells was examined. Immunofluorescence microscopy of rabbit stomach sections showed that Shh colocalized predominantly with parietal and pit, not chief/zymogen or neck, cell markers. In resting and histamine-stimulated rabbit gastric glands Shh was expressed only in parietal cells close to H+-K+-ATPase-containing tubulovesicular and secretory membranes with some colocalizing with gamma-actin at the basolateral membrane. Gastric gland microsomal membranes were prepared by differential and sucrose gradient centrifugation and immunoisolation with an anti-H+-K+-ATPase-alpha subunit antibody. The 45- and 19-kDa Shh proteins were detected by immunoblot in immunopurified H+-K+-ATPase-containing membranes from resting and stimulated gastric glands, respectively. Incubating glands with a high KCl concentration removed Shh from the membranes. Histamine stimulated 19-kDa Shh secretion from gastric glands into the medium. In human gastric cancer 23132/87 cells cultured on permeable membranes, histamine increased 19-kDa Shh secretion into both apical and basolateral media. These findings show that Shh is a peripheral protein associated with resting and stimulated H+-K+-ATPase-expressing membranes. In addition, Shh appears to be expressed at or close to the basolateral membrane of parietal cells.  相似文献   

8.
Previous studies have shown that gastric glands express at least sodium-hydrogen exchanger (NHE) isoforms 1-4. Our aim was to study NHE-3 localization in rat parietal cells and to investigate the functional activity of an apical membrane NHE-3 isoform in parietal cells of rats. Western blot analysis and immunohistochemistry showed expression of NHE-3 in rat stomach colocalizing the protein in parietal cells together with the beta-subunit of the H(+)-K(+)-ATPase. Functional studies in luminally perfused gastric glands demonstrated the presence of an apical NHE isoform sensitive to low concentrations of 5-ethylisopropyl amiloride (EIPA). Intracellular pH measurements in parietal cells conducted in omeprazole-pretreated superfused gastric glands showed an Na+-dependent proton extrusion pathway that was inhibited both by low concentrations of EIPA and by the NHE-3 specific inhibitor S3226. This pathway for proton extrusion had a higher activity in resting glands and was inhibited on stimulation of histamine-induced H(+)-K(+)-ATPase proton extrusion. We conclude that the NHE-3 isoform located on the apical membrane of parietal cells offers an additional pathway for proton secretion under resting conditions. Furthermore, the gastric NHE-3 appears to work under resting conditions and inactivates during periods of H(+)-K(+)-ATPase activity.  相似文献   

9.
Reduced gastrointestinal HCO3- secretion contributes to malabsorption and obstructive syndromes in cystic fibrosis. The apical HCO3- transport pathways in these organs have not been defined. We therefore assessed the involvement of apical Cl-/HCO3- exchangers and anion conductances in basal and cAMP-stimulated duodenal HCO3- secretion. Muscle-stripped rat and rabbit proximal duodena were mounted in Ussing chambers, and electrical parameters, HCO3- secretion rates, and 36Cl-, 22Na+, and 3H+ mannitol fluxes were assessed. mRNA expression levels were measured by a quantitative PCR technique. Removal of Cl- from or addition of 1 mM DIDS to the luminal perfusate markedly decreased basal HCO3- secretion but did not influence the HCO3- secretory response to 8-bromo-cAMP, which was inhibited by luminal 5-nitro-2-(3-phenylpropylamino)-benzoate. Bidirectional 22Na+ and 36Cl- flux measurements demonstrated an inhibition rather than a stimulation of apical anion exchange during cAMP-stimulated HCO3- secretion. The ratio of Cl- to HCO3- in the anion secretory response was compatible with both Cl- and HCO3- being secreted via the CFTR anion channel. CFTR expression was very high in the duodenal mucosa of both species. We conclude that in rat and rabbit duodena, an apical Cl-/HCO3- exchanger mediates a significant part of basal HCO3- secretion but is not involved in the HCO3- secretory response to cAMP analogs. The inhibitor profile, the strong predominance of Cl- over HCO3- in the anion secretory response, and the high duodenal CFTR expression levels suggest that a major portion of cAMP-stimulated duodenal HCO3- secretion is directly mediated by CFTR.  相似文献   

10.
HCO3- secretion by gastric mucous cells is essential for protection against acidic injury and peptic ulcer. Herein we report the identification of an apical HCO3- transporter in gastric surface epithelial cells. Northern hybridization and RT-PCR demonstrate the expression of this transporter, also known as SLC26A9, in mouse and rat stomach and trachea (but not kidney). In situ hybridization in mouse stomach showed abundant expression of SLC26A9 in surface epithelial cells with apical localization on immunofluorescence labeling. Functional studies in HEK-293 cells demonstrated that SLC26A9 mediates Cl-/HCO3- exchange and is also capable of Cl--independent HCO3- extrusion. Unlike other anion exchangers or transport proteins reported to date, SLC26A9 activity is inhibited by ammonium (NH4+). The inhibitory effect of NH4+ on gastric HCO3- secretion was also indicated by reduced gastric juxtamucosal pH (pHjm) in rat stomach in vivo. This report is the first to describe the inhibition of HCO3- transport in vitro and the reduction of pHjm in stomach in vivo by NH4+. Given its critical localization on the apical membrane of surface epithelial cells, its ability to transport HCO3-, and its inhibition by NH4+, we propose that SLC26A9 mediates HCO3- secretion in surface epithelial cells and is essential for protection against acidic injury in the stomach. Disease states that are associated with increased ammonia (NH3)/NH4+ generation (e.g., Helicobacter pylori) may impair gastric HCO3- secretion and therefore predispose patients to peptic ulcer by inhibiting SLC26A9.  相似文献   

11.
HCl secretion across the parietal cell apical secretory membrane involves the H+-K+-ATPase, the ClC-2 Cl- channel, and a K+ channel. In the present study, the cellular and subcellular distribution of ClC-2 mRNA and protein was determined in the rabbit gastric mucosa and in isolated gastric glands. ClC-2 mRNA was localized to parietal cells by in situ hybridization and by direct in situ RT-PCR. By immunoperoxidase microscopy, ClC-2 protein was concentrated in parietal cells. Immunofluorescent confocal microscopy suggested that the ClC-2 was localized to the secretory canalicular membrane of stimulated parietal cells and to intracellular structures of resting parietal cells. Immunogold electron microscopy confirmed that ClC-2 is in the secretory canalicular membrane of stimulated cells and in tubulovesicles of resting parietal cells. These findings, together with previous functional characterization of the native and recombinant channel, strongly indicate that ClC-2 is the Cl- channel, which together with the H+-K+-ATPase and a K+ channel, results in HCl secretion across the parietal cell secretory membrane.  相似文献   

12.
Syntaxins are differentially localized in polarized cells and play an important role in vesicle trafficking and membrane fusion. These soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are believed to be involved in tubulovesicle trafficking and membrane fusion during the secretory cycle of the gastric parietal cell. We examined the cellular localization and distribution of syntaxin-1 and syntaxin-3 in rabbit parietal cells. Fractionation of gastric epithelial cell membranes showed that syntaxin-1 was more abundant in a fraction enriched in apical plasma membranes, whereas syntaxin-3 was found predominantly in the H,K-ATPase-rich tubulovesicle fraction. We also examined the cellular localization of syntaxins in cultured parietal cells. Parietal cells were infected with CFP-syntaxin-1 and CFP-syntaxin-3 adenoviral constructs. Fluorescence microscopy of live and fixed cells demonstrated that syntaxin-1 was primarily on the apical membrane vacuoles of infected cells, but there was also the expression of syntaxin-1 in a subadjacent cytoplasmic compartment. In resting, non-secreting parietal cells, syntaxin-3 was distributed throughout the cytoplasmic compartment; after stimulation, syntaxin-3 translocated to the apical membrane vacuoles, there co-localizing with H,K-ATPase, syntaxin-1 and F-actin. The differential location of these syntaxin isoforms in gastric parietal cells suggests that these proteins may be critical for maintaining membrane compartment identity and that they may play important, but somewhat different, roles in the membrane recruitment processes associated with secretory activation.  相似文献   

13.
14.
The gastric parietal (oxyntic) cell is presented as a model for studying the dynamic assembly of the skeletal infrastructure of cell membranes. A monoclonal antibody directed to a 95-kD antigen of acid-secreting membranes of rat parietal cells was characterized as a tracer of the membrane movement occurring under physiological stimuli. The membrane rearrangement was followed by immunocytochemistry both at the light and electron microscopic level on semithin and thin frozen sections from resting and stimulated rat gastric mucosa. Double labeling experiments demonstrated that a specific and massive mobilization of actin, and to a lesser extent of spectrin (fodrin), was involved in this process. In the resting state, actin and spectrin were mostly localized beneath the membranes of all cells of the gastric gland, whereas the bulk of acid-secreting membranes appeared diffusely distributed in the cytoplasmic space of parietal cells without any apparent connection with cytoskeletal proteins. In stimulated cells, both acid-secreting material and actin (or spectrin) extensively colocalized at the secretory apical surface of parietal cells, reflecting that acid-secreting membranes were now exposed at the lumen of the secretory canaliculus and that this insertion was stabilized by cortical proteins. The data are compatible with a model depicting the membrane movement occurring in parietal cells as an apically oriented insertion of activated secretory membranes from an intracellular storage pool. The observed redistribution of actin and spectrin argues for a direct control by gastric acid secretagogues of the dynamic equilibrium existing between nonassembled (or preassembled) and assembled forms of cytoskeletal proteins.  相似文献   

15.
The renal cortical collecting duct (CCD) consists of principal and intercalated cells. Two forms of intercalated cells, those cells involved in H+/HCO3- transport, have recently been described. H+-secreting cells are capable of apical endocytosis and have H+ATPase on the apical membrane and a basolateral Cl-/HCO3- exchanger. HCO3(-)-secreting cells bind peanut agglutinin (PNA) to apical membrane receptors and have diffuse or basolateral distribution of H+ATPase; their Cl-/HCO3- exchanger is on the apical membrane. We found that 20 h after acid feeding of rabbits, there was a fourfold increase in number of cells showing apical endocytosis and a numerically similar reduction of cells binding PNA. Incubation of CCDs at pH 7.1 for 3-5 h in vitro led to similar, albeit less pronounced, changes. Evidence to suggest internalization and degradation of the PNA binding sites included a reduction in apical binding of PNA, decrease in pH in the environment of PNA binding, and incorporation of electron-dense PNA into cytoplasmic vesicles. Such remodeling was dependent on protein synthesis. There was also functional evidence for loss of apical Cl-/HCO3- exchange on PNA-labeled cells. Finally, net HCO3- flux converted from secretion to absorption after incubation at low pH. Thus, exposure of CCDs to low pH stimulates the removal/inactivation of apical Cl-/HCO3- exchangers and the internalization of other apical membrane components. Remodeling of PNA-labeled cells may mediate the change in polarity of HCO3- flux observed in response to acid treatment.  相似文献   

16.
Na-K-2Cl cotransporter-1 (NKCC) has been detected at exceptionally high levels in the gastric mucosa of several species, prompting speculation that it plays important roles in gastric secretion. To investigate this possibility, we 1) immunolocalized NKCC protein in the mouse gastric mucosa, 2) compared the volume and composition of gastric fluid from NKCC-deficient mice and their normal littermates, and 3) measured acid secretion and electrogenic ion transport by chambered mouse gastric mucosa. NKCC was localized to the basolateral margin of parietal cells, mucous neck cells, and antral base cells. In NKCC-deficient mice, gastric secretions of Na+, K+, Cl-, fluid, and pepsinogen were markedly impaired, whereas secretion of acid was normal. After stimulation with forskolin or 8-bromo-cAMP, chambered corpus mucosa vigorously secreted acid, and this was accompanied by an increase in transmucosal electrical current. Inhibition of NKCC with bumetanide reduced current to resting levels but had no effect on acid output. Although prominent pathways for basolateral Cl- uptake (NKCC) and apical Cl- exit [cystic fibrosis transmembrane conductance regulator (CFTR)] were found in antral base cells, no impairment in gastric secretion was detected in CFTR-deficient mice. Our results establish that NKCC contributes importantly to secretions of Na+, K+, Cl-, fluid, and pepsinogen by the gastric mucosa through a process that is electrogenic in character and independent of acid secretion. The probable source of the NKCC-dependent nonacidic electrogenic fluid secretion is the parietal cell. The observed dependence of pepsinogen secretion on NKCC supports the concept that a nonacidic secretory stream elaborated from parietal cells facilitates flushing of the proenzyme from the gastric gland lumen.  相似文献   

17.
Potassium ions are required for gastric acid secretion. Several potassium channels have been implicated in providing K(+) at the apical membrane of parietal cells. In examining the mRNA expression levels between gastric mucosa and liver tissue, KCNJ15 stood out as the most highly specific K(+) channel in the gastric mucosa. Western blot analysis confirmed that KCNJ15 is abundant in the stomach. Immunofluorescence staining of isolated gastric glands indicated that KCNJ15 was expressed in parietal cells and chief cells, but not in mucous neck cells. In resting parietal cells, KCNJ15 was mainly found in puncta throughout the cytoplasm but was distinct from H(+)-K(+)-ATPase. Upon stimulation, KCNJ15 and H(+)-K(+)-ATPase become colocalized on the apical membranes, as suggested by immunofluorescence staining. Western blot analysis of the resting and the stimulated membrane fractions confirmed this observation. From nonsecreting preparations, KCNJ15-containing vesicles sedimented after a 4-h centrifugation at 100,000 g, but not after a 30-min spin, which did sediment most of the H(+)-K(+)-ATPase-containing tubulovesicles. Most of the KCNJ15 containing small vesicle population was depleted upon stimulation of parietal cells, as indicated by the fact that the KCNJ15 signal was shifted to a large membrane fraction that sedimented at 4,000 g. Our results demonstrate that, in nonsecreting parietal cells, KCNJ15 is stored in vesicles distinct from the H(+)-K(+)-ATPase-enriched tubulovesicles. Furthermore, upon stimulation, KCNJ15 and H(+)-K(+)-ATPase both translocate to the apical membrane for active acid secretion. Thus KCNJ15 can be added to the family of apical K(+) channels in gastric parietal cells.  相似文献   

18.
High-pressure freezing (HPF) is currently the most reliable method to obtain an adequately frozen sample for high-resolution morphological evaluation. Here we applied the HPF technique to isolated rabbit gastric glands to reveal structural evidence that may be correlated with functional activity of gastric parietal cells. This approach provided well-preserved fine structure and excellent antigenicity of several parietal cell proteins. Microtubules were abundant in the cytoplasm and frequently appeared to be associating with tubulovesicles. Interestingly, many electron-dense coated vesicles were apparent around the intracellular canaliculi (IC) of resting parietal cells, consistent with active membrane retrieval from the apical membranes. Immunolabeling of H+/K+-ATPase was evident on the endocytic components (e.g., multivesicular bodies) and tubulovesicles. After histamine stimulation, the parietal cells characteristically showed expanded IC membranes with varied features of their apical microvilli. The labeling density of H+/K+-ATPase was four-fold higher on the IC membrane of stimulated parietal cells than on that of resting parietal cells. Immunolabeling of ezrin was clearly identified on the IC and basolateral membranes of parietal cells, corresponding to their F-actin-rich sites. The present findings provide a new insight into the correlation of cell structure and function in gastric parietal cells.  相似文献   

19.
Ambroxol is often used as a mucolytic agent in various lung diseases. However, it is unclear how ambroxol acts on bronchial epithelial cells. To clarify the action of ambroxol, we studied the effects of ambroxol on the ion transport in human Calu-3 cells, a human submucosal serous cell line, measuring the transepithelial short-circuit current and conductance across monolayers of Calu-3 cells. Ambroxol of 100 microM diminished the terbutaline (a beta2-adrenergic agonist)-stimulated Cl-/HCO3(-)-dependent secretion without any decreases in the conductance of cystic fibrosis transmembrane conductance regulator (CFTR) channel locating on the apical membrane. On the other hand, under the basal (unstimulated) condition ambroxol increased the Cl(-)-dependent secretion with no significant change in the apical CFTR channel conductance and decreased the HCO3- secretion associated with a decrease in the apical CFTR channel conductance. Ambroxol had no major action on the epithelial Na+ channel (ENaC) or the ENaC-mediated Na+ absorption. These results indicate that in Calu-3 cells: (1) under the basal (unstimulated) condition ambroxol increases Cl- secretion by stimulating the entry step of Cl- and decreases HCO3- secretion by diminishing the activity of the CFTR channel and/or the Na+/HCO3(-)-dependent cotransporter, (2) under the adrenergic agonist-stimulated condition, ambroxol decreases Cl- secretion by acting on the Cl-/HCO3- exchanger, and (3) ambroxol has a more powerful action than the adrenergic agonist on the Cl-/HCO3- exchanger, leading fluid secretion to a moderately stimulated level from a hyper-stimulated level.  相似文献   

20.
A marker of acid-secreting membrane movement in rat gastric parietal cells   总被引:3,自引:0,他引:3  
A monoclonal antibody (mab 146.14) marker of the movement of acid-secreting membranes in rat gastric parital cells has been produced and characterized. Mab 146.14 recognized a 95-kD major component of a purified membrane fraction of rat gastric mucosa, the protein composition of which was similar to that of well characterized porcine H+ -K+ ATPase-enriched membranes, and that presented the characteristic shift of density depending on whether it was purified from resting or stimulated tissues. Further biochemical analysis characterized the antigen as a membranous protein that might be in its native form, part of a higher multimolecular complex. Immunocytochemical localization of the antigen demonstrated that only membranes related to acid secretion in parietal cells expressed the 95-kD antigen. In resting conditions, the 95-kD antigen was diffusely distributed in the cell cytoplasm associated with inactive tubulovesicles. In stimulated cells, by contrast, all the antigen was recovered associated with secretory active microvilli formed by the apical insertion of the previously resting internal tubulovesicles. In conclusion, the 95-kD antigen, presumably a part of the rat gastric proton pump, is a marker of acid-secreting membranes in rat parietal cells. The translocation of antigen and membranes, observed by both light and electron microscopy supports the fusion model of membrane insertion from a cytoplasmic storage pool to the apical surface upon stimulation of acid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号