首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the implications of food web interactions to community structure have often focused on density-mediated interactions between predators and their prey. This approach emphasizes the importance of predator regulation of prey density via consumption (i.e. lethal effects), which, in turn, leads to cascading effects on the prey's resources. A more recent and contrasting view emphasizes the importance of non-lethal predator effects on prey traits (e.g. behaviour, morphology), or trait-mediated interactions. On rocky intertidal shores in New England, green crab ( Carcinus maenas ) predation is thought to be important to patterns of algal abundance and diversity by regulating the density of herbivorous snails ( Littorina littorea ). We found, however, that risk cues from green crabs can dramatically suppress snail grazing, with large effects on fucoid algal communities. Our results suggest that predator-induced changes in prey behaviour may be an important and under-appreciated component of food web interactions and community dynamics on rocky intertidal shores.  相似文献   

2.
One of the most important issues in ecology is understanding the causal mechanisms that shape the structure of ecological communities through trophic interactions. The focus on direct, trophic interactions in much of the research to date means that the potential significance of non-trophic, indirect, and facilitative interactions has been largely ignored in traditional food webs. There is a growing appreciation of the community consequences of such non-trophic effects, and the need to start including them in food web research. This review highlights how non-trophic, indirect, and facilitative interactions play an important role in organizing the structure of plant-centered arthropod communities. I argue that herbivore-induced plant responses, insect ecosystem engineers, and mutualisms involving ant–honeydew-producing insects all generate interaction linkages among insect herbivores, thereby producing complex indirect interaction webs on terrestrial plants. These interactions are all very common and widespread on terrestrial plants, in fact they are almost ubiquitous, but these interactions have rarely been included in traditional food webs. Finally, I will emphasize that because the important community consequences of these non-trophic and indirect interactions have been largely unexplored, it is critical that indirect interaction webs should be the focus of future research.  相似文献   

3.
WILL CRESSWELL 《Ibis》2008,150(1):3-17
Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or ‘density’ effects), where prey is consumed, or through non‐lethal effects (trait‐mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non‐lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non‐lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti‐predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade‐offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long‐term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging–predation risk trade‐off is probably an effective framework for understanding the importance of non‐lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade‐off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non‐lethal effects decouple the relationship between predator density and direct mortality rate. The trade‐off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate.  相似文献   

4.
The study demonstrates how to use a spatially explicit individual-based model (IBM) to tackle the problem of resolving density-mediated (DMII) and trait-mediated indirect interactions (TMII) when manipulative experimentation is difficult on the scale of community-level interactions in the real word. As an example we simulated predator-induced behavioural changes in a roach (Rutilus rutilus (L.)) population before and after stocking a lake with an additional pelagic predator (Sander lucioperca (L.)). By this it was possible to calculate bioenergetic gains and costs of trait changes as well as the relative proportions of DMIIs and TMIIs in roach consumption on littoral and pelagic resources in the lake food web. Despite higher net activity costs of 64%, roach migrating horizontally over the diel cycle had a net benefit (higher energy intake of 75%) compared to roach that were restricted to the littoral as a behavioural response to the new predator. By separating the components of the indirect predator effects, we demonstrate that a predator-induced modification in prey traits (behaviour, feeding activity) could contribute substantially to the net indirect effect of a predator even when there are strong density effects. When considering the predation pressure by roach on pelagic resources, the net TMIIs due to the behavioural adaptation of the consumer in response to the predator were 13–14 times stronger than the DMIIs alone. When comparing the different effects on littoral resources it can be shown that the TMIIs approximately compensate the DMIIs thus resulting in a nearly zero net effect.

Zusammenfassung

In der vorliegenden Arbeit wurde ein räumlich explizites individuenbasiertes Modell (IBM) verwendet, um dichteabhängige (DMII) und eigenschaftsabhängige (TMII) indirekte Interaktionen zu vergleichen. Da sich dies auf der Ebene der Lebensgemeinschaft unter realen experimentellen Bedingungen als besonders schwierig erwiesen hat, wurden räuberinduzierte Verhaltensänderungen einer Plötzenpopulation (Rutilus rutilus (L.)) vor und nach dem Besatz mit einem zusätzlichen pelagischen Räuber, dem Zander (Sander lucioperca (L.)), simuliert. Dadurch war es möglich, sowohl die energetischen Kosten und Nutzen der räuberinduzierten Verhaltensänderung als auch die relativen Anteile von DMIIs and TMIIs an der Plötzenkonsumtion auf litorale und pelagische Ressourcen innerhalb des Nahrungsnetzes zu kalkulieren. Verglichen mit den Plötzen, welche sich aufgrund des neuen Räubers vor allem im Litoral aufhielten, hatten die täglich (horizontal) wandernden Plötzen trotz höherer Nettoaktivitätskosten von 64% eine größere Energieaufnahme von 75%. Durch die Auflösung der verschiedenen indirekten Räubereffekte konnten wir demonstrieren, dass räuberinduzierte Modifikationen von Beuteeigenschaften (Verhalten, Fraßaktivität) erheblich zu den indirekten Nettoeffekten eines Räubers beitragen können, auch wenn starke dichteabhängige Effekte vorhanden sind. Wenn man die Plötzenkonsumtion auf pelagische Ressourcen betrachtet, so ergeben sich 13-14 fach stärkere TMIIs als DMIIs. Wenn man die verschiedenen Effekte auf litorale Ressourcen vergleicht, zeigt es sich, dass TMIIs die DMIIs kompensieren, wodurch der indirekte Nettoeffekt fast null beträgt.  相似文献   

5.
朱玉  王德利  钟志伟 《生态学报》2017,37(23):7781-7790
物种之间的间接作用关系是维持生物群落结构以及生态系统功能的关键因素。目前的理论模型和实验性研究均认为,物种间接作用的传递主要是由物种的密度变化所引起。但大量的实验证据表明,生物个体在形态、生理、行为和生活史性状的适应性变化,是物种间形成间接互作关系的另一个重要机制。生态学家把这种基于物种性状调控的种间关系称为性状调节的间接作用。深入了解性状调节的间接作用类型,发生机制和作用途径,有助于阐释自然界中多物种种间关系的复杂性和多样性形成机制。对性状调节的概念和性状的分类进行系统的总结,指出性状可塑性和物种特异性是物种间性状调节关系形成的两个重要机制。与其他类型的种间互作一样,性状调节的种间作用是驱动物种进化的重要力量。此外,分析了性状调节在自然群落中传递的几个重要途径,并强调这些间接作用在影响和调节生态系统功能和过程中的重要作用。最后,就性状调节种间关系的研究对象、研究尺度、以及研究方法等问题提出若干建议,为今后对这一问题的研究提供相关参考。  相似文献   

6.
Trophic cascades: the primacy of trait-mediated indirect interactions   总被引:10,自引:0,他引:10  
Trophic cascades are textbook examples of predator indirect effects on ecological systems. Yet there is considerable debate about their nature, strength and overall importance. This debate stems in part from continued uncertainty about the ultimate mechanisms driving cascading effects. We present a synthesis of empirical evidence in support of one possible ultimate mechanism: the foraging‐predation risk trade‐offs undertaken by intermediary species. We show that simple trade‐off behaviour can lead to both positive and negative indirect effects of predators on plant resources and hence can explain considerable contingency on the nature and strength of cascading effects among systems. Thus, predicting the sign and strength of indirect effect simply requires knowledge of habitat and resource use by prey with regard to predators’ presence, habitat use and hunting mode. The synthesis allows us to postulate a hypothesis for new conceptualization of trophic cascades which is to be viewed as an ultimate trade‐off between intervening species. In this context, different predators apply different rules of engagement based on their hunting mode and habitat use. These different rules then determine whether behavioural effects persist or attenuate at the level of the food chain.  相似文献   

7.
Intraspecific genetic variation can affect decomposition, nutrient cycling, and interactions between plants and their associated belowground communities. However, the effects of genetic variation on ecosystems can also be indirect, meaning that genes in a focal plant may affect ecosystems by altering the phenotype of interacting (i.e., neighboring) individuals. We manipulated genotype identity, species identity, and the possibility of belowground interactions between neighboring Solidago plants. We hypothesized that, because our plants were nitrogen (N) limited, the most important interactions between focal and neighbor plants would occur belowground. More specifically, we hypothesized that the genotypic identity of a plant's neighbor would have a larger effect on belowground biomass than on aboveground biomass, but only when neighboring plants were allowed to interact belowground. We detected species‐ and genotype‐level variation for aboveground biomass and ramet production. We also found that belowground biomass and ramet production depended on the interaction of neighbor genotype identity and the presence or absence of belowground interactions. Additionally, we found that interspecific indirect genetic effects (IIGEs; changes in focal plant traits due to the genotype identity of a heterospecific neighbor) had a greater effect size on belowground biomass than did focal genotype; however, this effect only held in pots that allowed belowground interactions. These results expand the types of natural processes that can be attributed to genotypes by showing that, under certain conditions, a plant's phenotype can be strongly determined by the expression of genes in its neighbor. By showing that IIGEs are dependent upon plants being able to interact belowground, our results also provide a first step for thinking about how genotype‐based, belowground interactions influence the evolutionary outcomes of plant‐neighbor interactions.  相似文献   

8.
Predators influence prey through consumption, and through trait-mediated effects such as emigration in response to predation risk (risk effects). We studied top-down effects of (sub-) adult wolf spiders (Lycosidae) on arthropods in a meadow. We compared risk effects with the overall top-down effect (including consumption) by gluing the chelicers of wolf spiders to prevent them from killing the prey. In a field experiment, we created three treatments that included either: (i) intact (‘predation’) wolf spiders; (ii) wolf spiders with glued chelicers (‘risk spiders’); or (iii) no (sub-) adult wolf spiders. Young wolf spiders were reduced by their (sub-) adult congeners. Densities of sheetweb spiders (Linyphiidae), a known intraguild prey of wolf spiders, were equally reduced by the presence of risk and predation wolf spiders. Plant- and leafhoppers (Auchenorrhyncha) showed the inverse pattern of higher densities in the presence of both risk and predation wolf spiders. We conclude that (sub-) adult wolf spiders acted as top predators, which reduced densities of intermediate predators and thereby enhanced herbivores. Complementary to earlier studies that found trait-mediated herbivore suppression, our results demonstrate that herbivores can be enhanced through cascading risk effects by top predators.  相似文献   

9.
10.
Indirect defence, the adaptive top‐down control of herbivores by plant traits that enhance predation, is a central component of plant–herbivore interactions. However, the scope of interactions that comprise indirect defence and associated ecological and evolutionary processes has not been clearly defined. We argue that the range of plant traits that mediate indirect defence is much greater than previously thought, and we further organise major concepts surrounding their ecological functioning. Despite the wide range of plant traits and interacting organisms involved, indirect defences show commonalities when grouped. These categories are based on whether indirect defences boost natural enemy abundance via food or shelter resources, or, alternatively, increase natural enemy foraging efficiency via information or alteration of habitat complexity. The benefits of indirect defences to natural enemies should be further explored to establish the conditions in which indirect defence generates a plant–natural enemy mutualism. By considering the broader scope of plant–herbivore–natural enemy interactions that comprise indirect defence, we can better understand plant‐based food webs, as well as the evolutionary processes that have shaped them.  相似文献   

11.
On quantitative measures of indirect interactions   总被引:2,自引:1,他引:1  
Indirect effects, whether density-mediated (DMII) or trait-mediated (TMII), have been recognized as potentially important drivers of community dynamics. However, empirical studies that have attempted to detect TMII or to quantify the relative strength of DMII and TMII in short-term studies have used a range of different metrics. We review these studies and assess both the consistency of a variety of different metrics and their robustness to (or ability to detect) ecological phenomena such as the dependence of forager behaviour on conspecific density. Quantifying indirect effects over longer time scales when behaviour and population density vary is more challenging, but also necessary if we really intend to incorporate indirect effects into predictions of long-term community dynamics; we discuss some problems associated with this effort and conclude with general recommendations for quantifying indirect effects.  相似文献   

12.
生物间的相互作用是物种共存和生物多样性维持的关键。传统的物种共存研究主要关注配对物种之间的直接相互作用, 而忽略了更为复杂的间接相互作用。本文首先介绍了两种间接相互作用: 链式相互作用(本质上仍是两两物种之间的相互作用)和高阶相互作用。在此基础上, 我们回顾了高阶相互作用定义的演变历史(包括狭义的高阶相互作用和广义的高阶相互作用)及其检验方法, 并介绍了高阶相互作用在多营养级之间和同一营养级内的研究概况。目前, 生态学家主要对多营养级之间(如食物网)的高阶相互作用的特征、发生机制、作用途径及实验证据等方面进行了详尽的研究。近年来, 同一营养级内的高阶相互作用也开始受到关注, 因此我们进一步介绍了同一营养级内个体水平高阶相互作用的重要意义和度量方法。从个体水平上研究高阶相互作用, 既能统一狭义和广义高阶相互作用在定义上的争议, 又可以将个体间的差异(如个体大小、个体的空间分布等信息)考虑进来。最后, 本文对高阶相互作用一些可能的重要研究方向进行了展望: 在自然群落中(尤其同一营养级内)检验高阶相互作用的普遍性与相对重要性, 探讨高阶相互作用的发生机制以及如何将高阶相互作用整合到现有的理论体系中等。高阶相互作用的研究有助于我们全面深刻地理解物种共存和生物多样性的维持机制, 丰富和完善群落生态学的理论框架, 为人类世背景下的生物多样性保护和生态系统功能维持与提升提供基础。  相似文献   

13.
Predators can affect herbivores both through direct consumption (density-mediated interactions) and by changing behavioural, physiological or morphological attributes of the prey (trait-mediated interactions). These effects on the herbivore can in turn affect the plant through density- and trait-mediated indirect interactions (DMIIs and TMIIs). While the effects of DMIIs and TMIIs imposed by predators has been shown to influence plant density and plant communities, we know little about the effects on plant quality. In addition, the DMII and TMII components of the predator may influence each other so that the total effect of the predator on the plant is not simply the sum of the DMII and TMII. We examined DMIIs and TMIIs between a stinkbug predator and a caterpillar, and show how these interactions affect plant quality, as measured by damage, resistance to herbivores, and a defence chemical, peroxidase. We used novel methods to estimate the independent and non-additive contribution of DMIIs and TMIIs to the plant phenotype. Both predator-induced DMIIs and TMIIs caused decreases in the amount of caterpillar herbivory on plants; a strong non-additive effect between the two resulted from redundancy in their effects. TMIIs initiated by the predator were primarily responsible for a decrease in induced plant resistance. However, DMIIs predominated for reducing the production of peroxidase. These data demonstrate how DMIIs and TMIIs initiated by predators cascade through tri-trophic interactions to affect plant damage and induced resistance.  相似文献   

14.
Biodiversity and food chain length each can strongly influence ecosystem functioning, yet their interactions rarely have been tested. We manipulated grazer diversity in seagrass mesocosms with and without a generalist predator and monitored community development. Changing food chain length altered biodiversity effects: higher grazer diversity enhanced secondary production, epiphyte grazing, and seagrass biomass only with predators present. Conversely, changing diversity altered top‐down control: predator impacts on grazer and seagrass biomass were weaker in mixed‐grazer assemblages. These interactions resulted in part from among‐species trade‐offs between predation resistance and competitive ability. Despite weak impact on grazer abundance at high diversity, predators nevertheless enhanced algal biomass through a behaviourally mediated trophic cascade. Moreover, predators influenced every measured variable except total plant biomass, suggesting that the latter is an insensitive metric of ecosystem functioning. Thus, biodiversity and trophic structure interactively influence ecosystem functioning, and neither factor's impact is predictable in isolation.  相似文献   

15.
Abstract.
  • 1 We assessed experimentally the effects of the predatory backswimmer, Notonecta maculata, on naturally colonizing mosquito populations in artificial outdoor pools in the Negev Desert, Israel. A single Notonecta adult per pool (8–15 litres water) had a very large negative impact on populations of Culiseta longiareolata, the most common species found in natural local pools. Notonecta caused large reductions of Culiseta egg rafts and early-instar larvae (instars I and II) and virtually 100% reductions of late-instar Culiseta larvae (instars III and IV) and pupae.
  • 2 Notonecta also caused a trophic cascade in the experimental pools; by preying on periphyton-feeding Culiseta larvae, Notonecta indirectly caused significantly higher densities of diatoms, the major component of the periphyton.
  • 3 Surveys of nearby natural pools taken between March and May supported the experimental results: a strong negative association between Notonecta and Culiseta among pools occurred as Notonecta increased in numbers and became more widely distributed. Anopheles (occurring only in May) and Culex mosquito immatures were not negatively associated with Notonecta. Culiseta was not associated with surface vegetation whereas both Culex and Anopheles showed strong positive associations with surface vegetation both among and within pools. We attribute the negative association between the predator and Culiseta to local prey extinctions caused by Notonecta in individual pools. Culiseta, being an open water species, is apparently more prone to predation by Notonecta than the vegetation-dwelling Culex and Anopheles.
  相似文献   

16.
The last 15 years has seen parallel surges of interest in two research areas that have rarely intersected: biodiversity and ecosystem functioning (BEF), and multispecies predator–prey interactions (PPI). Research addressing role of biodiversity in ecosystem functioning has focused primarily on single trophic‐level systems, emphasizing additive effects of diversity that manifest through resource partitioning and the sampling effect. Conversely, research addressing predator–prey interactions has focused on two trophic‐level systems, emphasizing indirect and non‐additive interactions among species. Here, we use a suite of consumer‐resource models to organize and synthesize the ways in which consumer species diversity affects the densities of both resources and consumer species. Specifically, we consider sampling effects, resource partitioning, indirect effects caused by intraguild interactions and non‐additive effects. We show that the relationship between consumer diversity and the density of resources and consumer species are broadly similar for systems with one vs. two trophic levels, and that indirect and non‐additive interactions generally do little more than modify the impacts of diversity established by the sampling effect and resource partitioning. The broad similarities between systems with one vs. two trophic levels argue for greater communication between researchers studying BEF, and researchers studying multispecies PPI.  相似文献   

17.
Parasites play pivotal roles in structuring communities, often via indirect interactions with non-host species. These effects can be density-mediated (through mortality) or trait-mediated (behavioural, physiological and developmental), and may be crucial to population interactions, including biological invasions. For instance, parasitism can alter intraguild predation (IGP) between native and invasive crustaceans, reversing invasion outcomes. Here, we use mathematical models to examine how parasite-induced trait changes influence the population dynamics of hosts that interact via IGP. We show that trait-mediated indirect interactions impart keystone effects, promoting or inhibiting host coexistence. Parasites can thus have strong ecological impacts, even if they have negligible virulence, underscoring the need to consider trait-mediated effects when predicting effects of parasites on community structure in general and biological invasions in particular.  相似文献   

18.
This study characterizes the timing of feeding, moving and resting for the two-spotted spider mite, Tetranychus urticae Koch and a phytoseiid predator, Phytoseiulus persimilis Athias-Henriot. Feeding is the interaction between T. urticae and plants, and between P. persimilis and T. urticae. Movement plays a key role in locating new food resources. Both activities are closely related to survival and reproduction. We measured the time allocated to these behaviours at four ages of the spider mite (juveniles, adult females immediately after moult and adult females 1 and 3 days after moult) and two ages of the predatory mite (juveniles and adult females). We also examined the effect of previous spider mite-inflicted leaf damage on the spider mite behaviour. Juveniles of both the spider mite and the predatory mite moved around less than their adult counterparts. Newly emerged adult female spider mites spent most of their time moving, stopping only to feed. This represents the teneral phase, during which adult female spider mites are most likely to disperse. With the exception of this age group, spider mites moved more and fed less on previously damaged than on clean leaves. Because of this, the spider mite behaviour was initially more variable on damaged leaves. Phytoseiulus persimilis rested at all stages for a much larger percentage of the time and spent less time feeding than did T. urticae; the predators invariably rested in close proximity to the prey. Compared to adult predators, juveniles spent approximately four times as long handling a prey egg. The predator-prey interaction is dependent upon the local movement of both the predators and prey. These details of individual behaviours in a multispecies environment can provide an understanding of population dynamics.  相似文献   

19.
Ecologists may wish to evaluate the potential for predators to suppress prey populations through the costs of induced defensive behaviors as well as through consumption. In this paper, we measure the ratio of non‐consumptive, defense‐inducing encounters relative to consumptive encounters (henceforth the ‘disturbed : consumed ratio’) for two species of aphids and propose that these disturbed : consumed ratios can help evaluate the potential for behaviorally mediated prey suppression. For the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was high, 30 : 1. For the cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was low, approximately 1 : 14. These results indicate that the potential for predators to suppress pea aphid populations through induction of defensive behaviors is high, whereas the potential for predators to suppress cotton aphid populations through induced behaviors is low. In measuring the disturbed : consumed ratios of two prey species, this paper makes two novel points: it highlights the variability of the disturbed : consumed ratio, and it offers a simple statistic to help ecologists draw connections between predator–prey behaviors and predator–prey population dynamics.  相似文献   

20.
1. To examine the strength and role of indirect effects through trophic cascades by omnivorous fish on algal biomass in streams, we introduced one of four fish species (ayu Plecoglossus altivelis altivelis, pike gudgeon Pseudogobio esocinus esocinus, Japanese dace Tribolodon hakonensis and pale chub Zacco platypus) in experimental pools. We also investigated the indirect effects of gudgeon, dace and chub on the growth of ayu. 2. We chose the four fish species across a continuum of omnivory. Ayu fed mainly on benthic algae, and gudgeon predominantly on invertebrates. Dace and chub fed on both algae and invertebrates, but dace preyed on invertebrates more than chub. 3. The presence of gudgeon, dace and chub reduced the number of algal-feeding invertebrates and increased the algal biomass through trophic cascades. Consequently, ayu growth rate over the experimental period in pools with one of the three fish species was 25.9-44.1 times greater than the growth rate in pools with only ayu. 4. The positive indirect effect on ayu growth was large for gudgeon and dace and small for chub, whereas the addition of ayu reduced ayu growth considerably due to intraspecific competition. 5. The relative intensity of indirect effects on ayu growth through trophic cascades was predictable from the food overlap between ayu and the other fishes. However, the similar strength of indirect effects by gudgeon and dace that fed differently on algae and invertebrates suggests that feeding behaviour, prey preference and trait-mediated indirect interactions were also important in the prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号