首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted to compare viability of immature and mature porcine oocytes vitrified in ethylene glycol (EG) using open-pulled straws (OPS). Oocytes that had been allowed to mature for 12 h (germinal vesicle group; GV) and 40 h (metaphase II group; MII) were divided into three treatments: (1) control; (2) treated with cytochalasin B and exposed to EG; and (3) treated with cytochalasin B and vitrified by stepwise exposure to EG in OPS. After warming, a sample of oocytes was fixed and evaluated by specific fluorescent probes before visualization using confocal microscopy. The remaining oocytes were fertilized and cleavage rate was recorded. Exposure of GV oocytes to EG or vitrification had a dramatic effect on spindle and chromosome configurations and no cleavage was obtained after in vitro fertilization. When MII oocytes were exposed to EG or were vitrified, 18 and 11% of oocytes, respectively, maintained the spindle structure and either EG exposure or vitrification resulted in substantial disruption in microfilament organization. The cleavage rates of mature oocytes after being exposed to EG or after vitrification were similar (14 and 13%, respectively) but were significantly less than that of control oocytes (69%). These results indicate that porcine oocytes at different meiotic stages respond differently to cryopreservation and MII porcine oocytes had better resistance to cryopreservation than GV stage oocytes.  相似文献   

2.
Lj X  Su L  Li Y  Ji W  Dinnyés A 《Theriogenology》2002,58(7):1253-1260
The objective of this study was to provide a simple cryopreservation method for oocytes from Yunnan Yellow Cattle and facilitate preservation efforts in this native Chinese breed, which is threatened by agricultural modernization. Cumulus-oocyte complexes (COCs) were collected from slaughterhouse ovaries and matured in vitro for 22-24 h, then selected for cryopreservation. Vitrification in open pulled straws (OPS) or in microdrops on a cooled metal surface (solid surface vitrification, SSV) was compared. The OPS vitrification solution consisted of 20% ethylene glycol (EG) and 20% DMSO. The SSV solution was a mixture of 35% EG, 5% polyvinyl-pyrrolidon (PVP) and 0.4 M trehalose. Vitrified and warmed oocytes were either fertilized in vitro or parthenogenetically activated. The rates of cleavage and development to blastocysts of fertilized oocytes following OPS versus SSV were not statistically different (38.3 and 12.5% versus 35.8 and 6.0%, respectively). The corresponding rates of parthenogenetic development to blastocysts were also not different (8.2 versus 3.5%, respectively). Development to blastocysts of non-vitrified controls following fertilization was significantly higher than that of the vitrified oocytes (22.6%, P < 0.05). These results demonstrate for the first time, that although both OPS and SSV procedures reduced embryonic development, Yunnan Yellow Cattle oocytes are capable of developing to blastocysts following cryopreservation.  相似文献   

3.
Experiments were conducted to assess the morphological viability and in vitro developmental potential of bovine oocytes after exposure to Ethylene Glycol‐bis(‐aminoethyl Ether) N,N,N,N‐Tetra‐acetic Acid (EGTA) prior to slow freezing. Different concentrations of EGTA (0, 1, 5 and 10 mM) and exposure intervals (5, 10 and 15 min) were tested on immature (GV) and in vitro matured (IVM) oocytes equilibrated in 1.5 mM propylene glycol (PG) without (experiment 1) or with slow freezing (experiment 2). In addition, PG and ethylene glycol (EG) were compared for cryoprotective efficacy. In vitro maturation (IVM), in vitro fertilization (IVF) and embryo culture (IVC) were performed in defined conditions. Pretreatment of both types of oocytes with 1 mM EGTA for 5 min without freezing yielded morphological and functional results comparable to those obtained for controls while results from higher concentrations of EGTA were lower (P < 0.05). Higher rates of freeze‐thaw survival and embryonic development were obtained after pretreating GV oocytes with 1 or 5 mM EGTA for 5 min. Similarly, better results were obtained when IVM oocytes were pretreated with 1 mM EGTA for either 5 or 10 min. When pretreated with 1 mM EGTA for 5 min and frozen with PG IVM oocytes exhibited higher survival rates (P < 0.05) than those frozen with EG. However, no significant differences were observed in the in vitro development of surviving GV or IVM oocytes frozen with either PG or EG. Results suggest that a prefreeze treatment with 1 mM EGTA for 5 min can enhance oocyte viability. Conditions described enabled blastocyst development of 2.9% of GV oocytes and 8.0% of IVM oocytes after cryopreservation and IVF. Mol. Reprod. Dev. 52:86–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Oocyte cryopreservation in carnivores can significantly improve assisted reproductive technologies in animal breeding and preservation programs for endangered species. However, the cooling process severely affects the integrity and the survival of the oocyte after thawing and may irreversibly compromise its subsequent developmental capability.In the present study, two different methods of oocyte cryopreservation, slow freezing and vitrification, were evaluated in order to assess which of them proved more suitable for preserving the functional coupling with cumulus cells as well as nuclear and cytoplasmic competence after warming of immature feline oocytes.From a total of 422 cumulus enclosed oocytes (COCs) obtained from queens after ovariectomy, 137 were stored by vitrification in open pulled straws, 147 by slow freezing and 138 untreated oocytes were used as controls. Immediately after collection and then after warming, functional coupling was assessed by lucifer yellow injection and groups of fresh and cryopreserved oocytes were fixed to analyze tubulin and actin distribution, and chromatin organization. Finally, COCs cryopreserved with both treatments were matured in vitro after warming. In most cases, oocytes cryopreserved by slow freezing showed a cytoskeletal distribution similar to control oocytes, while the process of vitrification induced a loss of organization of cytoskeletal elements. The slow freezing protocol ensured a significantly higher percentage of COCs with functionally open and partially open communications (37.2 vs. 19.0) and higher maturational capability (32.5 vs. 14.1) compared to vitrified oocytes. We conclude that although both protocols impaired intercellular junctions, slow freezing represents a suitable method of GV stage cat oocytes banking since it more efficiently preserves the functional coupling with cumulus cells after thawing as well as nuclear and cytoplasmic competence. Further studies are needed to technically overcome the damage induced by the cryopreservation procedures on immature mammalian oocytes.  相似文献   

5.
In this study, the cryoprotectant ethylene glycol (EG) was tested for its ability to improve and facilitate the cryopreservation of in vitro produced (IVP) bovine embryos. Embryos were cryopreserved in EG solutions supplemented with either newborn calf serum (NBCS) or polyvinyl alcohol (PVA). To assess EG toxicity, the embryos were equilibrated in EG concentrations from 1.8 to 8.9 M at room temperature for 10 min and then cultured for 72 h on a cumulus cell monolayer. The hatching rate was highest for day 7 blastocysts frozen in 3.6 M EG (98%) and was not different from the control group (85%). The controlled freezing (0.3 degrees C/min to -35 degrees C) of expanded day 7 blastocysts resulted in a hatching rate of 81%, which was similar to that of the nonfrozen controls (76%). Differential staining revealed only very few degenerate blastomeres attributed to freezing and thawing. Upon direct nonsurgical transfer of day 7 expanded blastocysts frozen in 3.6 M EG, a pregnancy rate of 43% was achieved, while the pregnancy rate after transfer of other developmental stages was significantly lower (22% with expanded day 8 blastocysts). When bovine IVP embryos were incubated at room temperature in 7.2 M EG preceded by preequilibration in 3.6 M EG, the hatching rate of day 7 expanded blastocysts reached 93%. Upon vitrification of IVP day 7 and day 8 blastocysts and expanded blastocysts in 7.2 M EG, the latter showed a higher hatching rate (42%) than blastocysts (12%). Overall, PVA as supplement to the basic freezing solution instead of NBCS had deleterious effects on survival after controlled freezing or vitrification. The simple cryopreservation protocol employed in this study and the low toxicity of ethylene glycol highlight the usefulness of this approach for controlled freezing of IVP embryos. However, further experiments are needed to improve the pregnancy rate following embryo transfer and to enhance survival after vitrification.  相似文献   

6.
The cryoloop is a technique where a thin nylon loop is used to suspend a film of cryoprotectant containing the oocytes and directly immersing them in liquid nitrogen. 508 bovine oocytes were collected, of these 351 were cryopreserved by slow freezing using standard straws or a new vitrification method using our self-constructed cryoloops and the remainder were controls. After thawing, the oocytes were inseminated by ICSI or standard IVF. The cryoloop vitrification method yielded a survival rate of 90.5% and the slow freezing technique a rate of 54.4% (p < 0.0001). When ICSI was performed, cryopreservation by the cryoloop vitrification method resulted in very similar cleavage rate to controls (16.0% vs. 17.3%) but slow freezing produced a slightly lower rate (9.4%). Cleavage rates after IVF in fresh oocytes was higher than the cryopreservation groups (49.5% vs. 15.4% and 25.8%), whereas after ICSI the rates were similar in all groups (17.3% vs. 9.4% and 16%). It is concluded that the new cryoloop vitrification technique followed by ICSI produce good embryo formation results and they could hold the future for effective oocyte cryopreservation.  相似文献   

7.
Le Gal F 《Theriogenology》1996,45(6):1177-1185
The ability of frozen immature goat oocytes to undergo in vitro maturation (IVM) and fertilization (IVF) was investigated. Fully grown germinal vesicle stage (GV-stage) goat oocytes were submitted to different variables of cryopreservation: 1) exposure to propanediol before maturation but without freezing to detect the level of damage attributable to propanediol alone, 2) removal of cumulus cells to mimic damage attributable to osmotic stress during cryoprotectant exposure or freezing procedure, and 3) rapid freezing with propanediol. Maturation and fertilization rates were 82.1, 71, 65.3 and 23.7% and 71.2, 40, 58.4 and 23.1% for control, exposed, denuded and frozen oocytes, respectively. These results indicate that freezing sticto sensu (i.e., cooling and warming phases) have detrimental effects on IVM of GV-stage oocytes, whereas the reduced IVF rates of post-thaw matured oocytes are imputable to a cryoprotectant effect.  相似文献   

8.
Phase Transition Temperature and Chilling Sensitivity of Bovine Oocytes   总被引:1,自引:0,他引:1  
A limiting factor for achieving cryopreservation of oocytes is direct chilling injury (DCI), which occurs during cooling. DCI, or cold shock, is defined as an irreversible damage expressed shortly after exposure to low, but not freezing, temperatures. The primary target of DCI is thought to be the plasma membrane. Recently, an association between DCI in sperm and the thermotropic phase transition of their membrane lipids was demonstrated. In the present study, we examined the phase transition of the membrane lipids of immature andin vitro-matured bovine oocytes during cooling, using Fourier transform infrared spectroscopy (FTIR). The phase transition of the membrane lipids of oocytes at the germinal vesicle (GV) stage occurred between 13 and 20°C, while a very broad phase transition, which centered around 10°C, was observed for mature oocytes (MII) stage. Thermotropic phase transitions were demonstrated to be related to the temperature at which DCI affected the integrity of the oocyte membranes. When immature oocytes were cooled to 13°C, fewer oocytes (40%) retained their membrane integrity than after exposure to 4°C (51%) or holding them at 38°C (78%), (as determined by the Fluorescein Diacetate-FDA test). This finding might suggest that holding immature oocytes at the phase transition temperature is more damaging to their membranes than exposure to lower temperatures. By contrast, no significant differences in membrane integrity were observed whenin vitro-matured oocytes were cooled to the same temperatures. Subsequently, GV oocytes were cooled to 4°C, and 26% underwent maturation and 19% underwent fertilizationin vitro. In vitro-matured oocytes that were cooled to 4°C displayed a slightly decreased rate of fertilization; the overall fertilization was 60% with 24% polyspermy, rather than the 76% fertilization rate with 12% polyspermy obtained with those not subjected to cooling. The high rate of polyspermy indicates that a site(s) other than the plasma membrane is affected during cooling of bovine oocytes. Nucleated bovine GV oocytes were electrofused within vitro-matured and enucleated oocytes, and then cooled to 4°C. Evaluation of the membrane integrity of the fused oocytes showed that these oocytes are chilling resistant, which strongly suggests that alteration of the membrane composition of an oocyte can change the cell's susceptibility to low temperatures. This finding led to an improvement in the survival of oocytes after cryopreservation.  相似文献   

9.
Gupta MK  Uhm SJ  Lee HT 《Theriogenology》2007,67(2):238-248
Cryopreservation of normal, lipid-containing porcine oocytes has had limited practical success. This study used solid surface vitrification (SSV) of immature germinal vesicle (GV) and mature meiosis II (MII) porcine oocytes and evaluated the effects of pretreatment with cytochalasin B, cryoprotectant type (dimethylsulfoxide (DMSO), ethylene glycol (EG), or both), and warming method (two-step versus single-step). Oocyte survival (post-thaw) was assessed by morphological appearance, staining (3',6'-diacetyl fluorescein), nuclear maturation, and developmental capacity (after in vitro fertilization). Both GV and MII oocytes were successfully vitrified; following cryopreservation in EG, more than 60% of GV and MII stage porcine oocytes remained intact (no significant improvement with cytochalasin B pretreatment). Oocytes (GV stage) vitrified in DMSO had lower (P<0.05) nuclear maturation rates (31%) than those vitrified in EG (51%) or EG+DMSO (53%). Survival was better with two-step versus single-step dilution. Despite high survival rates, rates of cleavage (20-26%) and blastocyst formation (3-9%) were significantly lower than for non-vitrified controls (60 and 20%). In conclusion, SSV was a very simple, rapid, procedure that allowed normal, lipid-containing, GV or MII porcine oocytes to be fertilized and develop to the blastocyst stage in vitro.  相似文献   

10.
Cytological and physiological changes during cryopreservation were studied in maize embryos at 35 days after pollination (DAP). Both dehydration and freezing caused cytological damage, such as plasmolysis, swelled mitochondria, increased heterochromatin, and nuclear shrinkage. Dehydration alone slightly impaired plasma membrane integrity while a drastic increase in electrolyte leakage was observed after freezing of embryos with moisture content above 23%. Damage to cellular ultrastructure and plasmalemma integrity was negatively related to moisture content in unfrozen embryos and positively related in frozen embryos. The pattern of changes in activity of antioxidant enzymes differed from one another during dehydration and/or freezing–thawing treatment. Dehydration increased activity of ascorbate peroxidase (APX) and glutathione reductase (GR) but decreased activity of superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR). Freezing further decreased GR and SOD activity and resulted in extremely low DHAR activity. Embryos at intermediate moisture contents had low catalase (CAT) activity before freezing but highest CAT activity after freeze–thaw. Both dehydration and freezing promoted membrane lipid peroxidation which resulted in an approximately threefold increase at most in the malondialdehyde content in postthaw embryos. Changes in viability of postthaw embryos can be closely related to damage in cellular ultrastructure and plasmalemma integrity but directly related neither to antioxidants nor lipid peroxidation levels.  相似文献   

11.
The aim of this work was to evaluate the effect of cryopreservation protocols on subsequent development of in vitro produced bovine embryos under different culture conditions. Expanded in vitro produced blastocysts (n = 600) harvested on days 7-9 were submitted to controlled freezing [slow freezing group: 10% ethylene glycol (EG) for 10 min and 1.2°C/min cryopreservation]; quick-freezing [rapid freezing group: 10% EG for 10 min, 20% EG + 20% glycerol (Gly) for 30 s]; or vitrification [vitrification group: 10% EG for 10 min, 25% EG + 25% Gly for 30 s] protocols. Control group embryos were not exposed to cryoprotectant or cryopreservation protocols and the hatching rate was evaluated on day 12 post-insemination. In order to evaluate development, frozen-thawed embryos were subjected to granulosa cell co-culture in TCM199 or SOFaa for 4 days. Data were analyzed by PROC MIXED model using SAS Systems for Windows?. Values were significant at p < 0.05. The hatching rate of the control group was 46.09%. In embryos cultured in TCM199, slow freezing and vitrification group hatching rates were 44.65 ± 5.94% and 9.43 ± 6.77%, respectively. In embryos cultured in SOFaa, slow freezing and vitrification groups showed hatching rates of 11.65 ± 3.37 and 8.67 ± 4.47%, respectively. In contrast, the rapid freezing group embryos did not hatch, regardless of culture medium. The slow freezing group showed higher hatching rates than other cryopreservation groups. Under such conditions, controlled freezing (1.2°C/min) can be an alternative to cryopreservation of in vitro produced bovine embryos.  相似文献   

12.
Isolated caprine early-staged follicles were submitted to osmotic tolerance tests in the presence of sucrose, ethylene glycol (EG), or NaCl solutions and were exposed to and cryopreserved (by slow or rapid cooling) in MEM alone or MEM supplemented with sucrose, EG (1.0 or 4.0 M), or both. When follicles were exposed to 1.5 M NaCl, only 2% of the follicles were viable, whereas 87% of the follicles were viable after exposure to 4.0 M EG. Regarding exposure time, the highest percentage of viable follicles was obtained when follicles were exposed for 10 min to 1.0 M EG + 0.5 M sucrose; exposure for 60 s to 4.0 M EG + 0.5 M sucrose also maintained high percentage viability in follicles. Slow cooling in the presence of 1.0 M EG + 0.5 M sucrose (75%) or rapid cooling in the presence of 4.0 M EG + 0.5 M sucrose (71%) resulted in a significantly higher proportion of viable follicles than all other treatments (P < 0.05). A 24-h culture of frozen-thawed follicles was used to assess survival; only slow-frozen follicles showed viability rates similar to control follicles (64% vs. 69% respectively; P > 0.05). Interestingly, the percentage of viable rapid-cooled follicles (59%) was similar to that obtained after in vitro culture of conventional slow-cooled follicles but was significantly lower than that in controls. Thus, in addition to determining improved procedures for the exposure of follicles to EG and sucrose before and after freezing of caprine early-staged follicles, we report the development of rapid- and slow-cooling protocols.  相似文献   

13.
Developmental competence of mammalian oocytes is compromised by currently available oocyte cryopreservation protocols. Experiments were designed to examine the effect of three cryopreservation protocols on the integrity of bovine oocyte DNA. In vitro matured bovine oocytes were cryopreserved either by slow cooling, vitrification in 0.25 ml straws, or in open pulled straws. After thawing/warming, recovered oocytes were immediately subjected to morphological evaluation. Morphologically intact oocytes underwent comet assay to detect cryoinjury at DNA level. All cryopreservation protocols resulted in significant morphological damage as well as DNA damage compared to unfrozen control. Among the morphologically intact oocytes, there was no difference among protocols in the number of oocytes displaying DNA damage. However, oocytes that had been cryopreserved by slow cooling or by vitrification in open pulled straws exhibited more damage than those vitrified in 0.25 ml straws in the extent of DNA damage. If we combine the number of oocytes with morphological damage and oocytes with DNA damage, oocytes cooled by slow cooling resulted in the most damage. This experiment demonstrated that oocyte DNA is a target of cryoinjury and different protocols result in different degrees of damage.  相似文献   

14.
The present study was conducted to evaluate the effects of three cryoprotectants, dimethyl sulphoxide (DMSO), ethylene glycol (EG) and 1,2-propanediol (PROH), each used at two concentrations (1.0 and 1.5 M) on the morphology, maturation rate and developmental capacity of usable quality immature buffalo oocytes subjected to slow freezing. The addition of the cryoprotectant before freezing and its dilution after thawing were carried out in a two- (for 1.0 M) or three-step manner (for 1.5 M). The incidence of damage was found to be significantly higher (P<0.05) with the lower concentration of 1.0 M, compared to that with 1.5 M for all the three cryoprotectants examined. The proportion of immature oocytes recovered in a morphologically normal state was significantly higher (P<0.05) for DMSO than those for EG or PROH at both 1.0 and 1.5 M concentrations. Among the six combinations evaluated, that of DMSO at 1.5 M concentration was found to be superior to others. Irrespective of the type or concentration of the cryoprotectant, partial or complete loss of the cumulus mass was the most prevalent damage. Following in vitro maturation, the nuclear maturation rate was significantly higher (P<0.05) for DMSO than those for EG or PROH at both 1.0 and 1.5 M concentrations. When the in vitro matured oocytes were subjected to in vitro fertilization after slow freezing, using 1.5 M DMSO as cryoprotectant, 4.5% and 0.6% of them were able to develop to morulae and blastocysts, respectively, on Day 9 post insemination, compared to 19.2% and 10.6%, respectively, for the controls. In conclusion, DMSO was more effective than EG or PROH for the slow freezing of immature buffalo oocytes and blastocysts could be produced from immature buffalo oocytes subjected to slow freezing in 1.5 M DMSO.  相似文献   

15.
Minke whale (Balaenoptera acutorostrata) follicular oocytes were cryopreserved by a slow-step freezing procedure using ethylene glycol. The morphologically viable proportion of postthawed minke whale follicular oocytes was 39.7%. The maturity of the animals (immature and mature whales) or the presence or absence of cumulus cells (CC) did not affect the proportion of morphologically viable oocytes. Postthawed oocytes were examined for nuclear status after in vitro maturation. The presence of CC (29.1%) significantly enhanced (P < 0.05) the proportion of oocytes at metaphase I/anaphase I/telophase I stages compared to results with the absence of CC (13.5%). A total of 4 of 194 postthawed oocytes matured to the second metaphase stage after culture for 5.5 days with or without CC. The cryopreserved immature oocytes obtained from immature and mature whales were processed to examine the ultrastructure by transmission electron microscopy. Varying ultrastructural damage to the cytoplasm was observed as a result of the cryopreservation procedures. These results show that 20-30% of cryopreserved minke whale follicular oocytes can resume meiosis in vitro, but damage induced by the freezing and thawing procedures was observed.  相似文献   

16.
Successful cryopreservation of mammalian oocytes would provide a steady source of materials for nuclear transfer and in vitro embryo production. Our goal was to develop an effective vitrification protocol to cryopreserve bovine oocytes for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. Bovine oocytes matured in vitro were placed in 4% ethylene glycol (EG) in TCM 199 plus 20% fetal bovine serum (FBS) at 39 degrees C for 12-15 min, and then transferred to a vitrification solution (35% EG, 5% polyvinyl-pyrrolidone, 0.4 M trehalose in TCM 199 and 20% FBS). Oocytes were vitrified in microdrops on a precooled (-150 degrees C) metal surface (solid-surface vitrification). The vitrified microdrops were stored in liquid nitrogen and were either immediately thawed or were thawed after storage for 2-3 wk. Surviving oocytes were subjected to 1) parthenogenetic activation, 2) in vitro fertilization, or 3) nuclear transfer with cultured adult fibroblast cells. Treated oocytes were cultured in KSOM containing BSA or FBS for 9 to 10 days. Embryo development rates were recorded daily and morphologically high-quality blastocysts were cryopreserved for nuclear transfer-derived embryos at Day 7 or Day 8 of culture. Immediate survival of vitrified/thawed oocytes varied between 77% and 86%. Cleavage and blastocyst development rates of vitrified oocytes following in vitro fertilization or activation were lower than those of the controls. For nuclear transfer, however, vitrified oocytes supported embryonic development as equally well as fresh oocytes.  相似文献   

17.
Three ejaculates from each of eight stallions were subjected to cryopreservation in a milk/egg yolk-based freezing extender or an egg yolk-based freezing extender. Semen was exposed to a fast prefreeze cooling rate (FAST; semen immediately subjected to cryopreservation) or a slow prefreeze cooling rate (SLOW; semen pre-cooled at a controlled rate for 80 min prior to cryopreservation). Postthaw semen was diluted in initial freezing medium (FM) or INRA 96 (IMV Technologies, L'Aigle, France) prior to analysis of 10 experimental end points: total motility (MOT; %), progressive motility (PMOT; %), curvilinear velocity (VCL; μm/s), linearity (LIN; %), intact acrosomal and plasma membranes (AIMI; %), intact acrosomal membranes (AI; %), intact plasma membranes (MI; %), and DNA quality. Eight of 10 experimental endpoints (MOT, PMOT, average-path velocity [VAP], mean straight-line velocity [VSL], LIN AIMI, AI, and MI) were affected by extender type, with egg yolk-based extender yielding higher values than milk/egg yolk-based extender (P < 0.05). Exposure of extended semen to a slow prefreeze cooling period resulted in increased values for six of eight endpoints (MOT, PMOT, VCL, AIMI, AI, and MI), as compared with a fast prefreeze cooling period (P < 0.05). As a postthaw diluent, INRA 96 yielded higher mean values than FM for MOT, PMOT, VCL, average-path velocity, and mean straight-line velocity (P < 0.05). Treatment group FM yielded slightly higher values than INRA 96 for LIN and MI (P < 0.05). In conclusion, a slow prefreeze cooling rate was superior to a fast prefreeze cooling rate, regardless of freezing extender used, and INRA 96 served as a satisfactory postthaw diluent prior to semen analysis.  相似文献   

18.
Cryopreservation of flow-sorted bovine spermatozoa   总被引:4,自引:0,他引:4  
Schenk JL  Suh TK  Cran DG  Seidel GE 《Theriogenology》1999,52(8):1375-1391
Experiments were designed to maximize sperm viability after sorting by flow cytometry and cryopreservation. Experiments concerned staining sperm with Hoechst 33342 dye, subsequent dilution, interrogation with laser light, and postsort concentration of sperm. Concentrating sorted sperm by centrifugation to 10 to 20 x 10(6) sperm/ml reduced adverse effects of dilution. Exposing sperm to 150 mW of laser light resulted in lower percentages of progressively motile sperm after thawing than did 100 mW. Sorted sperm extended in a TRIS-based medium had higher postthaw sperm motility after incubation for 1 or 2 h than sperm extended in egg-yolk citrate (EYC) or TEST media, and equilibrating sperm at 5 degrees C for 3 or 6 h prior to freezing was superior to an equilibration time of 18 h. For sorting sperm 4 to 7 h postcollection, it was best to hold semen at 22 degrees C neat instead of at 400 x 10(6)/ml in a TALP buffer with Hoechst 33342. Current procedures for sexing sperm using flow cytometry result in slightly lower postthaw motility and acrosomal integrity compared to control sperm. However, this damage is minor compared to that caused by routine cryopreservation. Fertilizing capacity of flow-sorted sperm is quite acceptable as predicted by simple laboratory assays, and sexed bovine sperm for commercial AI may be available within 2 years.  相似文献   

19.
The purpose of this study was to evaluate the ability of cat oocytes, at different stages of maturation, to survive after cryopreservation and to assess their subsequent development following IVM and IVF. In the initial toxicity trial, immature oocytes were exposed to different concentrations of DMSO and ethylene glycol (EG). Resumption of meiosis and metaphase II were evaluated after removal of the cryoprotectant and IVM. The highest rates of resumption of meiosis (51.4%) were achieved after exposure to 1.5 mol l(-1) of cryoprotectants, and no difference was observed with control oocytes. Metaphase II was obtained in 25.7% (P<0.01) and 22.9% (P<0.005) of oocytes exposed to 1.5 mol l(-1) of DMSO and ethylene glycol, although at lower rates than in control oocytes (54.4%). On the basis of this finding, 1.5 mol l(-1) of cryoprotectant was chosen for freezing cat oocytes at the germinal vesicle stage (immature) or at metaphase II stage (mature). Post-thaw viability was assessed by the evaluation of the embryo development in vitro. After fertilization, mature oocytes frozen in ethylene glycol cleaved in better proportions (38.7%) than immature oocytes (6.8%, P<0.001), and no differences were observed in the cleavage rate of oocytes frozen at different maturation stages with DMSO (immature 12.8%; mature 14.1%). Embryonic development beyond the 8-cell stage was obtained only when mature oocytes were frozen with ethylene glycol (11.3%). This study suggests that cryopreserved cat oocytes can be fertilized successfully and that their development in vitro is enhanced when mature oocytes are frozen with ethylene glycol. The stage of maturation may be a key element in improving cat oocyte cryopreservation.  相似文献   

20.
The present study was undertaken to define the conditions for optimal cryopreservation of hepatocytes. Two different freezing procedures were analyzed: a slow freezing rate (SFR) (-2 degrees C/min down to -30 degrees C and then quick freezing to -196 degrees C) and a fast freezing rate (FFR) (direct freezing of tubes to -196 degrees C: -39 degrees C/min). Cells were frozen in fetal bovine serum containing 10% Dimethyl sulfoxide (DMSO). After rapid thawing at 37 degrees C, followed by dilution and removal of the cryoprotectant, cells were plated and several parameters were followed as criteria for optimal cryopreservation of cells. The FFR cells showed no apparent ultrastructural damage after 24 h of culture. Plating efficiency and spreading were similar as controls. Gluconeogenesis from pyruvate and fructose, tyrosine amino transferase induction by glucagon and dexamethasone, urea production, and plasma protein synthesis of FFR cells were similar to those found in control cultures. The FFR procedure, in comparison to the SFR method, seemed to render the best preserved hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号