首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kallistatin is a serine proteinase inhibitor (serpin) that specifically inhibits tissue kallikrein. The inhibitory activity of kallistatin is abolished upon heparin binding. The loop between the H helix and C2 sheet of kallistatin containing clusters of basic amino acid residues has been identified as a heparin-binding site. In this study, we investigated the role of the basic residues in this region in tissue kallikrein inhibition. Kallistatin mutants containing double Ala substitutions for these basic residues displayed a 70-80% reduction of association rate constants, indicating the importance of these basic residues in tissue kallikrein inhibition. A synthetic peptide derived from the sequence between the H helix and C2 sheet of kallistatin was shown to suppress the kallistatin-kallikrein interaction through competition for tissue kallikrein binding. To further evaluate the function of this loop, we used alpha1-antitrypsin, a non-heparin-binding serpin and slow tissue kallikrein inhibitor as a scaffold to engineer kallikrein inhibitors. An alpha1-antitrypsin chimera harboring the P3-P2' residues and a sequence homologous to the positively charged region between the H helix and C2 sheet of kallistatin acquired heparin-suppressed inhibitory activity toward tissue kallikrein and exhibited an inhibitory activity 20-fold higher than that of the other chimera, which contained only kallistatin's P3-P2' sequence, and 2300-fold higher than that of wild-type alpha1-antitrypsin. The alpha1-antitrypsin chimera with inhibitory characteristics similar to those of kallistatin demonstrates that the loop between the H helix and C2 sheet of kallistatin is crucial in tissue kallikrein inhibition, and this functional loop can be used as a module to enhance the inhibitory activity of a serpin toward tissue kallikrein. In conclusion, our results indicate that a positively charged loop between the H helix and C2 sheet of a serpin can accelerate the association of a serpin with tissue kallikrein by acting as a secondary binding site.  相似文献   

2.
Kallistatin is a serine proteinase inhibitor that forms complexes with tissue kallikrein and inhibits its activity. In this study, we compared the inhibitory activity of recombinant human kallistatin and two mutants, Phe388Arg (P1) and Phe387Gly (P2), toward human tissue kallikrein. Recombinant kallistatins were expressed in Escherichia coli and purified to apparent homogeneity using metal-affinity and heparin-affinity chromatography. The complexes formed between recombinant kallistatins and tissue kallikrein were stable for at least 150 h. Wild-type kallistatin as well as both Phe388Arg and Phe387Gly mutants act as inhibitors and substrates to tissue kallikrein as analyzed by complex formation. Kinetic analyses showed that the inhibitory activity of Phe388Arg variant toward tissue kallikrein is two-fold higher than that of wild type (P1Phe), whereas Phe387Gly had only 7% of the inhibitory activity toward tissue kallikrein as compared to wild type. The Phe388Arg variant but not wild type inhibited plasma kallikrein's activity. These results indicate that P1Arg variant exhibits more potent inhibitory activity toward tissue kallikrein while wild type (P1Phe) is a more selective inhibitor of tissue kallikrein. The P2 phenylalanine is essential for retaining the hydrophobic environment for the interaction of kallistatin and kallikrein.  相似文献   

3.
Kallistatin is a serpin with a unique P1 Phe, which confers an excellent inhibitory specificity toward tissue kallikrein. In this study, we investigated the P3-P2-P1 residues (residues 386-388) of human kallistatin in determining inhibitory specificity toward human tissue kallikrein by site-directed mutagenesis and molecular modeling. Human kallistatin mutants with 19 different amino acid substitutions at each P1, P2, or P3 residue were created and purified to compare their kallikrein binding activity. Complex formation assay showed that P1 Arg, P1 Phe (wild type), P1 Lys, P1 Tyr, P1 Met, and P1 Leu display significant binding activity with tissue kallikrein among the P1 variants. Kinetic analysis showed the inhibitory activities of the P1 mutants toward tissue kallikrein in the order of P1 Arg > P1 Phe > P1 Lys >/= P1 Tyr > P1 Leu >/= P1 Met. P1 Phe displays a better selectivity for human tissue kallikrein than P1 Arg, since P1 Arg also inhibits several other serine proteinases. Heparin distinguishes the inhibitory specificity of kallistatin toward kallikrein versus chymotrypsin. For the P2 and P3 variants, the mutants with hydrophobic and bulky amino acids at P2 and basic amino acids at P3 display better binding activity with tissue kallikrein. The inhibitory activities of these mutants toward tissue kallikrein are in the order of P2 Phe (wild type) > P2 Leu > P2 Trp > P2 Met and P3 Arg > P3 Lys (wild type). Molecular modeling of the reactive center loop of kallistatin bound to the reactive crevice of tissue kallikrein indicated that the P2 residue required a long and bulky hydrophobic side chain to reach and fill the hydrophobic S2 cleft generated by Tyr(99) and Trp(219) of tissue kallikrein. Basic amino acids at P3 could stabilize complex formation by forming electrostatic interaction with Asp(98J) and hydrogen bond with Gln(174) of tissue kallikrein. Our results indicate that tissue kallikrein is a specific target proteinase for kallistatin.  相似文献   

4.
5.
We have purified, cloned and characterized kallistatin, a tissue kallikrein-binding protein (KBP) in humans and rodents. Kallistatin is a unique serine proteinase inhibitor (serpin) with Phe-Phe residues at the P2 and P1 positions. Structural and functional analysis of kallistatin by site-directed mutagenesis and protein engineering indicate that wild-type kallistatin is selective for tissue kallikrein. Kallistatin is expressed and localized in endothelial and smooth muscle cells of blood vessels and has multiple roles in vascular function independent of the tissue kallikrein-kinin system. First, kallistatin induces vasorelaxation of isolated aortic rings and reduces renal perfusion pressure in isolated rat kidneys. Transgenic mice overexpressing rat kallistatin are hypotensive, and adenovirus-mediated gene delivery of human kallistatin attenuates blood pressure rise in spontaneously hypertensive rats. Second, kallistatin stimulates the proliferation and migration of vascular smooth muscle cells in vitro and neointima formation in balloon-injured rat arteries. Third, kallistatin inhibits the proliferation, migration and adhesion of endothelial cells in vitro and angiogenesis in the rat model of hindlimb ischemia. These results demonstrate novel roles of kallistatin in blood pressure regulation and vascular remodeling.  相似文献   

6.
7.
The regulation of tissue kallikrein activity by plasma serine proteinase inhibitors (serpins) was investigated by measuring the association rate constants of six tissue-kallikrein family members isolated from the rat submandibular gland, with rat kallikrein-binding protein (rKBP) and alpha 1-proteinase inhibitor (alpha 1-PI). Both these serpins inhibited kallikreins rK2, rK7, rK8, rK9 and rK10 with association rate constants in the 10(3)-10(4) M-1.s-1 range, whereas only 'true' tissue kallikrein rK1 was not susceptible to alpha 1-PI. This results in slow inhibition of rK1 by plasma serpins, which could explain why this kallikrein is the only member of the gene family identified so far that induces a transient decrease in blood pressure when injected in minute amounts into the circulation.  相似文献   

8.
A plasma kallikrein inhibitor in guinea pig plasma (KIP) was purified to homogeneity. KIP is a single chain protein and the apparent molecular weight is estimated to be 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In amino acid composition, KIP is similar to human and mouse alpha 1-proteinase inhibitors and mouse contrapsin. KIP forms an equimolar complex with plasma kallikrein in a dose- and time-dependent fashion. The association rate constants for the inhibition of guinea pig plasma kallikrein by KIP, alpha 2-macroglobulin, C1-inactivator and antithrombin III were 2.5 +/- 0.3.10(4), 2.4 +/- 0.4.10(4), 6.6 +/- 0.5.10(4) and 9.1 +/- 0.6.10(2), respectively. Comparison of the association rate constants and the normal plasma concentrations of the four inhibitors demonstrates that KIP is ten-times as effective as alpha 2-MG and other two inhibitors are marginally effective in the inhibition of kallikrein. KIP inhibits trypsin and elastase rapidly, and thrombin and plasmin slowly, but is inactive for chymotrypsin and gland kallikrein. These results suggest that KIP is the major kallikrein inhibitor in guinea pig plasma and the proteinase inhibitory spectrum is unique to KIP in spite of the molecular similarity to alpha 1-proteinase inhibitor.  相似文献   

9.
Structural elements of kallistatin required for inhibition of angiogenesis   总被引:2,自引:0,他引:2  
Kallistatin is aserpin first identified as a specific inhibitor of tissue kallikrein.Our recent studies showed that kallikrein promoted angiogenesis,whereas kallistatin inhibited angiogenesis and tumor growth. This studyis aimed to identify the structural elements of kallistatin essentialfor its antiangiogenic function. Kallistatin mutants at the hingeregion (A377T) and a major heparin-binding domain (K312A/K313A) werecreated by site-directed mutagenesis. Recombinant kallistatin mutantA377T did not bind or inhibit tissue kallikrein activity. Wild-typekallistatin and kallistatin mutant A377T, but not kallistatin mutantK312A/K313A lacking heparin-binding activity, inhibited VEGF-inducedproliferation, growth, and migration of human microvascular endothelialcells. Similarly, wild-type kallistatin and kallistatin mutant A337T,but not kallistatin mutant K312A/K313A, significantly inhibitedVEGF-induced capillary tube formation of cultured endothelial cells inMatrigel and capillary formation in Matrigel implants in mice. Toelucidate the role of the heparin-binding domain in modulatingangiogenesis, we showed that wild-type kallistatin interrupted thebinding of 125I-labeled VEGF to endothelial cells, whereaskallistatin mutant K312A/K313A did not interfere with VEGF binding.Consequently, wild-type kallistatin, but not kallistatin mutantK312A/K313A, suppressed VEGF-induced phosphorylation of Akt. Takentogether, these results indicate that the heparin-binding domain, butnot the reactive site loop of kallistatin, is essential for inhibiting VEGF-induced angiogenesis.

  相似文献   

10.
Kallistatin是一种丝氨酸蛋白酶抑制剂.早期研究发现,它能与组织激肽释放酶结合并抑制其活性,随后kallistatin的抗血管生成、抗炎、抗肿瘤、抗氧化等功能也逐步被发现.Kallistatin有2个主要功能结构域:反应中心环和肝素结合结构域,各自发挥不同的作用.Kallistatin通过肝素结合结构域竞争性抑制血管内皮生长因子(VEGF)和肿瘤坏死因子与它们的受体结合,进而起到抗血管生成和抗炎作用.近年研究发现,kallistatin的多种功能由不同信号通路介导,主要为PI3K-Akt信号通路和TNF-α-NF-κB信号通路.此外,kallistatin还通过丝裂原活化激酶(mitogen-activated protein kinase,MAPK)等信号通路发挥作用.本文就目前研究的kallistatin的结构功能及其在PI3K-Akt、TNF-α等多种信号通路中的调节功能和作用机制进行阐述.  相似文献   

11.
Kallistatin is a heparin-binding serine proteinase inhibitor (serpin), which specifically inhibits human tissue kallikrein by forming a covalent complex. The inhibitory activity of kallistatin is blocked upon its binding to heparin. In this study we attempted to locate the heparin-binding site of kallistatin using synthetic peptides derived from its surface regions and by site-directed mutagenesis of basic residues in these surface regions. Two synthetic peptides, containing clusters of positive-charged residues, one derived from the F helix and the other from the region encompassing the H helix and C2 sheet of kallistatin, were used to assess their heparin binding activity. Competition assay analysis showed that the peptide derived from the H helix and C2 sheet displayed higher and specific heparin binding activity. The basic residues in both regions were substituted to generate three kallistatin double mutants K187A/K188A (mutations in the F helix) and K307A/R308A and K312A/K313A (mutations in the region between the H helix and C2 sheet), using a kallistatin P1Arg variant as a scaffold. Analysis of these mutants by heparin-affinity chromatography showed that the heparin binding capacity of the variant K187A/K188A was not altered, whereas the binding capacity of K307A/R308A and K312A/K313A mutants was markedly reduced. Titration analysis with heparin showed that the K312A/K313A mutant has the highest dissociation constant. Like kallistatin, the binding activity of K187A/K188A to tissue kallikrein was blocked by heparin, whereas K307A/R308A and K312A/K313A retained significant binding and inhibitory activities in the presence of heparin. These results indicate that the basic residues, particularly Lys(312)-Lys(313), in the region between the H helix and C2 sheet of kallistatin, comprise a major heparin-binding site responsible for its heparin-suppressed tissue kallikrein binding.  相似文献   

12.
An inhibitor of factor XIIa has been purified to homogeneity from bovine plasma. The purification steps included precipitation of contaminating proteins with polyethylene glycol and chromatography on DEAE-cellulose, Affi-Gel blue, and immobilized wheat germ lectin. The apparent molecular weight of the XIIa inhibitor (called INH1) was 85,000, reduced, and 92,000, nonreduced, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The extinction coefficient (E0.1%(280)) of INH1 is 1.3, and the protein contains 17.7% carbohydrate. Purified antibody to INH1 raised in either rabbits or chickens formed a precipitin line of identity with purified INH1 and a component of bovine plasma, but there was no reaction with purified human inhibitors or with any component of human plasma. INH1 inhibits bovine and human XIIa, bovine and human C1-esterase, and human kallikrein, but does not inhibit bovine kallikrein, bovine trypsin, human plasmin, or human thrombin. This activity is similar to that of C1-inhibitor but different from antithrombin III, alpha 2-antiplasmin, or alpha 1-protease inhibitor. INH1 at a physiological concentration (0.47 microM) causes rapid inactivation of XIIa. The two molecules react in a 1:1 stoichiometry with a second-order rate constant of 1.23 X 10(6) M-1 min-1.  相似文献   

13.
The reactive site loop of serpins undoubtedly defines in part their ability to inhibit a particular enzyme. Exchanges in the reactive loop of serpins might reassign the targets and modify the serpin-protease interaction kinetics. Based on this concept, we have developed a procedure to change the specificity of known serpins. First, reactive loops are very good substrates for the target enzymes. Therefore, we have used the phage-display technology to select from a pentapeptide phage library the best substrates for the human prostate kallikrein hK2 [Cloutier, S.M., Chagas, J.R., Mach, J.P., Gygi, C.M., Leisinger, H.J. & Deperthes, D. (2002) Eur. J. Biochem. 269, 2747-2754]. Selected substrates were then transplanted into the reactive site loop of alpha1-antichymotrypsin to generate new variants of this serpin, able to inhibit the serine protease. Thus, we have developed some highly specific alpha1-antichymotrypsin variants toward human kallikrein 2 which also show high reactivity. These inhibitors might be useful to help elucidate the importance of hK2 in prostate cancer progression.  相似文献   

14.
Kallistatin, a serpin that specifically inhibits human tissue kallikrein, was demonstrated to be cleaved at the Phe-Phe bond in its reactive site loop (RSL) by cathepsin D. Internally quenched fluorescent peptides containing the amino acid sequence of kallistatin RSL were highly susceptible to hydrolysis by cathepsin D. Surprisingly, these peptides were efficiently hydrolyzed at Phe-Phe bond, despite having Lys and Ser at P2 and P2' positions, respectively, which was reported to be very unfavorable for substrates for cathepsin D. Due to the importance of cathepsin D in several physiological and pathological processes, we took the peptide containing kallistatin RSL sequence, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, as a reference substrate for a systematic specificity study of S3 to S3' protease subsites (EDDnp=N-[2,4-dinitrophenyl]-ethylenediamine and Abz=ortho-amino benzoic acid). We present in this paper some internally quenched fluorescent peptides that were efficient substrates for cathepsin D. They essentially differ from other previously described substrates by their higher kcat/Km values due, mainly, to low Km values, such as the substrate Abz-Ala-Ile-Ala-Phe-Phe-Ser-Arg-Gln-EDDnp (Km=0.27 microM, kcat=16.25 s(-1), kcat/Km=60185 microM(-1) x s(-1)).  相似文献   

15.
16.
Luo LY  Jiang W 《Biological chemistry》2006,387(6):813-816
Accumulated evidence has shown that human tissue kallikreins (hKs), a group of 15 homologous secreted serine proteases, are novel cancer biomarkers. We report here the inhibition profiles of selected hKs, including hK5, hK7, hK8, hK11, hK12, hK13, and hK14, by several common serine protease inhibitors (serpins) found in plasma. The association constants for the binding of serpins to kallikreins were determined and compared. Protein C inhibitor was found to be the fastest-binding serpin for most of these hKs. alpha2-Antiplasmin, alpha1-antichymotrypsin, and alpha1-antitrypsin also showed rapid inhibition of certain hKs. Kallistatin exhibited fast inhibition only with hK7. Our data demonstrate that these hKs are specifically regulated by certain serpins and their distinct inhibition profiles will be valuable aids in various aspects of kallikrein research.  相似文献   

17.
A tissue kallikrein was purified over 1500-fold from the postmicrosomal supernatant of human submaxillary glands. The purified enzyme gave a single band, corresponding to an apparent molecular weight of 42,000 on SDS-polyacrylamide gel electrophoresis. This enzyme cross-reacted with the anti-human urinary kallikrein antiserum. The purified enzyme was characterized in comparison with the purest human urinary kallikrein preparation. Both enzymes hydrolyzed the synthetic substrate, Ac-Phe-Arg-OMe, most effectively. Aprotinin, TLCK, and PMSF suppressed the enzyme activities, while SBTI, LBTI, and alpha 1-antitrypsin had no effect at all. The purified enzyme generated kinin from the natural substrate, kininogen. It was concluded therefore that the purified enzyme is a typical tissue kallikrein.  相似文献   

18.
Two trypsin inhibitors (TI-1, TI-2) were isolated from guinea pig plasma and purified to homogeneity. In amino-acid composition as well as molecular masses, TI-1 (Mr 58,000) and TI-2 (Mr 57,000) are similar to each other and to human and mouse alpha 1-proteinase inhibitors, and mouse con-trapsin. The two inhibitors form equimolar complexes with proteinases. The effectiveness of the inhibitors was characterized by association rate constants under second-order rate conditions. The inhibitory action of TI-1 was rapid for bovine trypsin, porcine pancreatic elastase and guinea pig plasma kallikrein, but slow for bovine thrombin and guinea pig plasmin and not detectable for bovine chymotrypsin and porcine pancreatic kallikrein. The inhibitory action of TI-2 was rapid for trypsin and chymotrypsin, but slow for guinea pig plasma kallikrein and not detectable for other proteinases. These results show that TI-1 and TI-2 are physicochemically similar but functionally distinct from each other and from human alpha 1-proteinase inhibitor that inhibits trypsin, chymotrypsin and elastase.  相似文献   

19.
Hejgaard J 《FEBS letters》2001,488(3):149-153
Six of seven serpins detected in grains of rye (Secale cereale) were purified and characterized. The amino acid sequence close to the blocked N-terminus, the reactive center loop sequence and the second order association rate constant (k(a)') for irreversible complex formation with chymotrypsin were determined for each serpin. Three of four serpins containing the unusual reactive center P2-P1' QQ/S and one with P2-P1' PQ/M were equally efficient inhibitors of chymotrypsin (k(a)' approximately 10(5) M(-1) s(-1)). One serpin with P2-P1' PY/M was a faster inhibitor (k(a)' approximately 10(6) M(-1) s(-1)). Similar but differently organized glutamine-rich reactive centers were recently found in grain serpins cloned from wheat [Ostergaard et al. (2000) J. Biol. Chem. 275, 33272] but not from barley. The prolamin storage proteins of cereal grains contain similar sequences in their glutamine-rich repeats. A possible adaption of hypervariable serpin reactive centers late in Triticeae cereal evolution as defence against insects feeding on cereal grains is discussed.  相似文献   

20.
Genes encoding proteins of the serpin superfamily are widespread in the plant kingdom, but the properties of very few plant serpins have been studied, and physiological functions have not been elucidated. Six distinct serpins have been identified in grains of hexaploid bread wheat (Triticum aestivum L.) by partial purification and amino acid sequencing. The reactive centers of all but one of the serpins resemble the glutamine-rich repetitive sequences in prolamin storage proteins of wheat grain. Five of the serpins, classified into two protein Z subfamilies, WSZ1 and WSZ2, have been cloned, expressed in Escherichia coli, and purified. Inhibitory specificity toward 17 proteinases of mammalian, plant, and microbial origin was studied. All five serpins were suicide substrate inhibitors of chymotrypsin and cathepsin G. WSZ1a and WSZ1b inhibited at the unusual reactive center P(1)-P(1)' Gln-Gln, and WSZ2b at P(2)-P(1) Leu-Arg-one of two overlapping reactive centers. WSZ1c with P(1)-P(1)' Leu-Gln was the fastest inhibitor of chymotrypsin (k(a) = 1.3 x 10(6) m(-1) s(-1)). WSZ1a was as efficient an inhibitor of chymotrypsin as WSZ2a (k(a) approximately 10(5) m(-1) s(-1)), which has P(1)-P(1)' Leu-Ser-a reactive center common in animal serpins. WSZ2b inhibited plasmin at P(1)-P(1)' Arg-Gln (k(a) approximately 10(3) m(-1) s(-1)). None of the five serpins inhibited Bacillus subtilisin A, Fusarium trypsin, or two subtilisin-like plant serine proteinases, hordolisin from barley green malt and cucumisin D from honeydew melon. Possible functions involving interactions with endogenous or exogenous proteinases adapted to prolamin degradation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号