首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of castration on the levels of brain monoamines and their metabolites has been investigated in rats which became or did not become muricidal following long-term isolation. Fourteen brain areas were explored: olfactory bulbs (OB), olfactory tubercles (OT), septum (Se), striatum (Sr), amygdala (A), thalamus (Th), hypothalamus (Hy), hippocampus (Hi), superior colliculus (SC), inferior colliculus (IC), raphe (Ra), pons-medulla (PM), frontal cortex (FC), temporal cortex (TC) and parietal cortex (PC). Except in the raphe of non muricidal rats and in the striatum of muricidal animals, all other areas examined demonstrate some changes of monoamines neurotransmitter or their metabolites after castration. The strongest changes, always increases, were found in the thalamus. In several brain areas, the changes occurring after castration, differ quantitatively and qualitatively in muricidal and non-muricidal rats.Special issue dedicated to Dr. Claude Baxter.Prof. P. Mandel passed away on October 6th, 1992.  相似文献   

3.
The effects of acute and subchronic administration of chlordiazepoxide (CDZ) on [3H][3-methyl-histidyl2]thyrotropin-releasing hormone binding to thyrotropin-releasing hormone (TRH) receptors in membrane preparations from various regions of rat brain were examined. Acute administration of CDZ (50 mg/kg x 3 within 24 h) did not alter either the equilibrium dissociation constant (Kd) or the maximum number of binding sites (Bmax) in cerebellum (CB), olfactory bulbs (OB), frontal cortex (Cx), hypothalamus (HT) or corpus striatum (ST). However, the Kds of the pyriform cortex/amygdala (PC/A) (Kd = 3.6 +/- 0.1 nM compared to 1.9 +/- 0.1 nM in the control group; p less than 0.01) and the hippocampus (HP) (Kd = 7.8 +/- 0.7 nM compared to 2.1 +/- 0.1 nM in the control group; p less than 0.01) were increased. There were no changes in Bmax. Subchronic administration of CDZ (50 mg/kg/day for 7 days) increased the Kd of the PC/A complex (p less than 0.05), the OB (p less than 0.05) and the HP (p less than 0.01) without altering in Bmax. These results, showing regional differences in the response of TRH receptors to acute and subchronic CDZ administration, suggest that reduced affinity of TRH receptors in the PC/A complex, OB and HP may be related to some of the neurobiological actions of CDZ and/or its metabolites.  相似文献   

4.
Liu PS  Watanabe S  Kirino Y 《Zoological science》2007,24(12):1247-1250
Calcium release from intracellular stores has various actions in neurons, but its effects on network oscillation have not been well understood. The olfactory center (procerebrum, PC) of the terrestrial slug Limax valentianus shows a regular oscillation in the local field potential (LFP). Here we report that caffeine, which is an agonist for ryanodine receptors and triggers calcium release from intra-cellular stores, has strong modulatory effects on the PC. In isolated PC neurons, caffeine enhanced the cytoplasmic calcium concentration, and this was blocked by ryanodine. Caffeine elevated the frequency and amplitude of the LFP oscillation, which was also blocked by ryanodine. The time lag between the frequency and amplitude effects suggests distinct mechanisms for the modulation of these two parameters. These results suggest that calcium release from intracellular stores through ryanodine receptors activates network activity in the PC.  相似文献   

5.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

6.
鼠类具有密度依赖的行为—内分泌反馈调节机制:当其种群密度升高时,会产生社会应激,增加紧张焦虑、攻击等行为,同时其神经内分泌也产生相应变化.然而,密度升高引起的社会应激可能涉及到视觉、嗅觉、触觉、听觉、味觉等不同感官,而不同感官对社会应激反应产生的独特作用尚不清楚.我们以前的研究发现,高密度饲养可导致雄性布氏田鼠脑部催产...  相似文献   

7.
Retinoic acid (RA), a member of the steroid/thyroid superfamily of signaling molecules, is an essential regulator of morphogenesis, differentiation, and regeneration in the mammalian olfactory pathway. RA-mediated teratogenesis dramatically alters olfactory pathway development, presumably by disrupting retinoid-mediated inductive signaling that influences initial olfactory epithelium (OE) and bulb (OB) morphogenesis. Subsequently, RA modulates the genesis, growth, or stability of subsets of OE cells and OB interneurons. RA receptors, cofactors, and synthetic enzymes are expressed in the OE, OB, and anterior subventricular zone (SVZ), the site of neural precursors that generate new OB interneurons throughout adulthood. Their expression apparently accommodates RA signaling in OE cells, OB interneurons, and slowly dividing SVZ neural precursors. Deficiency of vitamin A, the dietary metabolic RA precursor, leads to cytological changes in the OE, as well as olfactory sensory deficits. Vitamin A therapy in animals with olfactory system damage can accelerate functional recovery. RA-related pathology as well as its potential therapeutic activity may reflect endogenous retinoid regulation of neuronal differentiation, stability, or regeneration in the olfactory pathway from embryogenesis through adulthood. These influences may be in register with retinoid effects on immune responses, metabolism, and modulation of food intake.  相似文献   

8.
Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes.  相似文献   

9.
It is thought that hypothalamic 5-hydroxytryptamine (5HT) and norepinephrine (NE) are involved in the regulation of feeding in chicks. The present study was conducted to elucidate changes in the levels of extracellular 5HT and NE in the hypothalamus during feeding of chicks. In order to measure 5HT, NE and 4-hydroxy-3-methoxyphenylglycol (MHPG), which is a major metabolite of NE, we used brain microdialysis and high-pressure liquid chromatography with an electrochemical detector. After collecting samples to determine the basal levels of 5HT, NE and MHPG, food-deprived birds were given access to food. 5HT levels in the medial hypothalamus (MH) and lateral hypothalamus (LH) increased during the first 30 min of feeding, and then returned to basal levels. NE and MHPG in the LH increased during feeding, and remained elevated throughout the experiment. This study supports an idea that hypothalamic monoamines in the chick brain are involved in the regulation of feeding.  相似文献   

10.
This study investigated the effect of caffeine on physical performance in healthy citizens aged > or =70 yr. The randomized, double-blind, placebo-controlled, crossover study was conducted in 15 men and 15 women recruited by their general practitioner. Participants abstained from caffeine for 48 h and were randomized to receive one capsule of placebo and then caffeine (6 mg/kg) or caffeine and then placebo with 1 wk in between. One hour after intervention, we measured reaction and movement times, postural stability, walking speed, cycling at 65% of expected maximal heart rate, perceived effort during cycling, maximal isometric arm flexion strength, and endurance. Analysis was by intention to treat, and P < 0.05 was regarded as significant. Caffeine increased cycling endurance by 25% [95% confidence interval (CI): 13-38; P = 0.0001] and isometric arm flexion endurance by 54% (95% CI: 29-83; P = 0.0001). Caffeine also reduced the rating of perceived exertion after 5 min of cycling by 11% (95% CI: 5-17; P = 0.002) and postural stability with eyes open by 25% (95% CI: 2-53; P = 0.03). Caffeine ingestion did not affect muscle strength, walking speed, reaction, and movement times. At the end of the study, 46% of participants correctly identified when they received caffeine and placebo. Caffeine increased exercise endurance in healthy citizens aged > or =70 yr, but the participants' reasons for stopping the test may have varied between subjects, as the cycling test was done at approximately 55% of maximal oxygen consumption. Further studies are required to investigate whether caffeine can be utilized to improve the physical performance of elderly citizens.  相似文献   

11.
The lectin concanavalin A (ConA) when applied to the olfactory mucosa (OM) of frog and rat, is reported to partially inhibit electro-olfactogram (EOG) responses to fatty acid odours. Control odours like isoamyl acetate were not affected. We have now studied in the frog whether this treatment affects the corresponding olfactory bulb (OB) response. The OB surface was impregnated with a voltage-sensitive dye (RH 414). Spatial and temporal patterns of odour response were measured by changes in dye fluorescence that occur when OB neurons fire. The apparatus, consisted of an epi-fluorescent microscope coupled to a 64 x 64 pixel CCD photodetection camera. This allowed imaging over an 0.9 mm2 area of the OB glomerular layer to high resolution. When the frog OM was bathed with 5 mg ml(-1) ConA in Ringer's solution, the n-butyric acid odour response in the OB largely disappeared while the isoamyl acetate response did not change. When this experiment was repeated in the presence of 20 mM methyl alpha-D mannopyranoside (a ConA inhibitor), ConA failed to inhibit the n-butyric acid response. Moreover the ConA effect was partially reversible. A Ringer's wash of the OM after ConA treatment, partially restored the OB response to n-butyric acid. Thus the olfactory bulb results seem compatible with the EOG results and reinforce the notion that ConA selectively prevents n-butyric acid sensitive olfactory receptor neurons from firing. Chemical modification of the OM and their effect on OB response patterns may provide a useful approach to investigate olfactory quality coding.  相似文献   

12.
Social relations are built and maintained from the interaction among individuals. The oxytocin (OT), vasopressin (VP), estrogen, dopamine, and their receptors are involved in the modulation of sexual behavior in females. This study aimed to analyze the impact of OT gene knockout (OTKO) on sexual behavior and the gene expression of oxytocin (OTR), estrogen alpha (ERα), estrogen beta (ERβ), vasopressin (V1aR), and dopamine (D2R) receptors in the olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HPC), and hypothalamus (HPT), as well as in the synthesis of VP in the HPT of female mice. Wild-type (WT) littermates were used for comparisons. The CDNAs were synthesized by polymerase chain reaction and the gene expression was calculated with the 2?ΔΔCt formula. Our results showed that the absence of OT caused an increase in the frequency and duration of non-receptive postures and a decrease in receptive postures in the OTKO. OTKO females showed a significant decrease in the gene expression of OTR in the HPC, V1aR in the HPT, and ERα and ERβ in the PFC. There was no significant difference in the gene expression of D2R of OTKO. However, OTKO showed an increased gene expression of V1aR in the HPC. There is no significant difference in VP mRNA synthesis in the HPT between OTKO and WT. Our findings demonstrate that the absence of OT leads to significant changes in the expression of the studied genes (OTR, ERα, ERβ, V1aR), and these changes may contribute to the decreased sexual behavior observed in OTKO females.  相似文献   

13.
In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals. The aim of this work was twofold: whether learning also induces similar changes in OB target structures and whether such OB response depends on its centrifugal inputs. Local field potentials (LFPs) were recorded through chronically implanted electrodes in the OB, piriform and enthorhinal cortices of freely moving rats performing an olfactory discrimination. Oscillatory activities characteristics (amplitude, frequency and time-course) were extracted in beta and gamma range by a wavelet analysis. First, we found that odour induced beta oscillatory activity was present not only in the OB, but also in the other olfactory structures. In each recording site, characteristics of the beta oscillatory responses were dependent of odour, structure and learning level. Unilateral section of the olfactory peduncle was made before training, and LFPs were symmetrically recorded in the two bulbs all along the acquisition of the learning task. Data showed that deprivation of centrifugal feedback led to an increase of spontaneous gamma activity. Moreover, under this condition olfactory learning was no longer associated with the typical large beta band. As a whole, learning modulation of the beta oscillatory response in olfactory structures may reflect activity of a distributed functional network involved in odour representation.  相似文献   

14.
The effects of oral administration of caffeine (10 mg/kg) on plasma free 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) levels, behavioral ratings, blood pressure, and autonomic symptoms was determined in eleven healthy subjects. Caffeine produced robust increases in subject rated anxiety and nervousness and small elevations in blood pressure and a decrease in heart rate. Caffeine did not alter plasma MHPG in a consistent fashion and there was no correlation between changes in plasma MHPG and changes in anxiety or other ratings. Caffeine may produce symptoms of anxiety-nervousness without increasing central norepinephrine turnover.  相似文献   

15.
Polito AB  Goldstein DL  Sanchez L  Cool DR  Morris M 《Peptides》2006,27(11):2877-2884
The objective was to characterize the urinary oxytocin (OT) system with the goal of using it as a biomarker for neurohypophyseal peptide secretion. We studied urinary OT secretion in mice under three conditions: (1) in OT gene deletion mice (OT -/-) which lack the ability to produce the peptide; (2) after arterial vascular infusion of OT and (3) after physiological stimulation with consumption of 2% sodium chloride. OT was measured by radioimmunoassay (RIA) and Surface-Enhanced Laser Desorption Ionization Time of Flight Mass Spectroscopy (SELDI TOF MS). In OT -/- mice (n=25), urinary OT levels were not detectable, while in OT +/+ mice (n=23) levels were 250.2+/-35.3 pg/ml. To evaluate blood/urine transfer, mice with chronic carotid arterial catheters were infused with saline or OT (5 or 20 pmol/min). Peak urine OT levels were 89+/-11.5 and 844+/-181 ng/ml in the low and high OT groups, respectively. Proteomic evaluation showed MS peaks, corresponding to OT ( approximately 1009 Da) and a related peptide ( approximately 1030 Da) with highest levels in mice infused with OT. Salt loading (5 days of 2% NaCl as drinking water) increased plasma osmolality (3.3%), increased plasma and urinary vasopressin (AVP), but caused no changes in OT. Thus, using non-invasive urine samples, we document that urinary OT and AVP can be used to monitor changes in peptide secretion. Urinary OT and AVP, as well as other urinary peptides, may provide a viable biomarker for peptide secretion and may be useful in clinical studies.  相似文献   

16.
Immunohistochemistry of brain 5-hydroxytryptamine   总被引:1,自引:0,他引:1  
Summary An immunohistochemical assay for 5-hydroxytryptamine (5HT) has been developed, validated by parallel radioimmunoassay and a series of tests with monoamines or related molecules, and applied to the detection of 5HT in rat brain sections. The procedure seems to be more sensitive and specific than the classical Falck-Hillarp technique. Among amines and related compounds tested, only 5-methoxytryptamine has been found to cross-react. 5HT-immunoreactive neurons and/or fibres have been observed in the spinal cord, brain stem, hypothalamic nuclei, epiphysis and subcommissural organ, thalamus, striatum, corpus callosum, amygdala, hippocampus, olfactory tubercle, and cerebral cortex.  相似文献   

17.
The injection of caffeine (100 mg/kg, i.p.) into male rats acutely increased brain levels of trytophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). Blood levels of glucose, nonesterified fatty acids (NEFA) and insulin also increased, while those of the aromatic and branched-chain amino acids fell. Serum tryptophan levels either did not fall, or increased. Consequently, the serum ratio of trypthopahn to the sum of other large neutral amino acids (LNAA) increased. Less consistently noted were increases in serum free tryptophan levels. Brain tyrosine levels were not appreciably altered by caffeine, nor was the serum tyrosine ratio. In dose-response studies, 25 mg/kg of caffeine was the minimal effective dose needed to raise brain tryptophan, but only the 100 mg/kg dose elevated all three indoles in brain. In no experiments did caffeine, at any time or dose, alter brain levels of dopamine or norepinephrine. Caffeine thus probably raises brain tryptophan levels by causing insulin secretion, and thereby changing plasma amino acid levels to favor increased tryptophan uptake into brain. The rises in brain 5-HT and 5-HIAA may follow from the increase in brain tryptophan, although further data are required clearly to establish such a mechanism.  相似文献   

18.
1. Caffeine (35-70 mM) elicited contractions of Aplysia buccal muscle El. In a Ca2+-free medium, in which ACh-elicited contractions rapidly fail, caffeine elicited contractions of approximately the same size as in normal medium. 2. 5-HT (10(-8) M and 10(-7) M) did not enhance caffeine-elicited contractions. 3. Lower concentrations (1-10 mM) of caffeine inhibited ACh-elicited contractions. Caffeine (7 mM) reduced the contraction by 80%. 4. Caffeine (7 mM) reduced ACh-elicited depolarization by 60%. 5. Caffeine (7 mM) increased 45Ca2+ influx into Aplysia buccal muscle I5. The stimulation of influx of 45Ca2+ by 10(-3) M ACh was non-additive with the stimulation caused by caffeine, and 7 mM caffeine reduced the influx caused by 10(-3) M ACh.  相似文献   

19.
Microamperometry was used to monitor quantal catecholamine release from individual PC12 cells in response to raised extracellular K+ and caffeine. K+-evoked exocytosis was entirely dependent on Ca2+ influx through voltage-gated Ca2+ channels, and of the subtypes of such channels present in these cells, influx through N-type was primarily responsible for triggering exocytosis. L-type channels played a minor role in mediating K+-evoked secretion, whereas P/Q-type channels did not appear to be involved in secretion at all. Caffeine also evoked catecholamine release from PC12 cells, but only in the presence of extracellular Ca2+. Application of caffeine in Ca2+-free solutions evoked large, transient rises of [Ca2+]i, but did not trigger exocytosis. When Ca2+ was restored to the extracellular solution (in the absence of caffeine), store-operated Ca2+ influx was observed, which evoked exocytosis. The amount of secretion evoked by this influx pathway was far greater than release triggered by influx through L-type Ca2+ channels, but less than that caused by Ca2+ influx through N-type channels. Our results indicate that exocytosis may be regulated even in excitable cells by Ca2+ influx through pathways other than voltage-gated Ca2+ channels.  相似文献   

20.
Monoaminergic systems are important modulators of the responses to stress. Stress may influence feeding behavior, and the involvement of monoamines in the control of food intake is well recognized. We investigated the effects induced by chronic-restraint stress, 1 h a day, for 40 days, on eating behavior and on monoamines in distinct brain structures. Increased consumption of sweet pellets, and not of peanuts, was observed. Dopamine (DA), serotonin (5–HT), and their metabolites were measured by HPLC-EC. After chronic restraint, the results observed were decreased 5–HT in hippocampus, with increased 5–HIAA/5–HT; decreased 5–HIAA levels in cortex; reduction in DA in hippocampus, and increased levels in amygdala and hypothalamus; HVA increased in cortex, as well as HVA/DA ratio, while DOPAC/DA decreased. HVA decreased in hypothalamus, as well as HVA/DA, and DOPAC/DA and HVA/DA decreased in the amygdala. These results suggest that restraint stress differentially affects the activity of central dopaminergic and serotonergic neurons, and this may be related to the effects observed in eating behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号