首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120‰, and sulfate reduction was strongly inhibited at an in situ salinity of 215‰. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180‰ or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120‰.  相似文献   

2.
Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4 +-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88–0.99, P<0.01). Our results indicated that an enhanced NH4 +-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems.  相似文献   

3.
Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 103 most probable number (MPN)/liter, 0.7 to 2.1 × 103 MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 104 MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons.  相似文献   

4.
Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February–June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March–April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May–June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km2 lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1–7‰ in the 0–1 m surface layer to levels of 20–25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0–5 m depth increased significantly over the season in both habitats, from 7 to 14°C outside and 5 to 17°C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.  相似文献   

5.
Responses of Atriplex portulacoides upon 40-day-long exposure to salinity (0?C1,000?mM NaCl) were investigated. Mother plants originated from a sabkha located in a semi-arid region of Tunisia. The plant relative growth rate and leaf expansion increased significantly at 200?mM NaCl but decreased at higher salinities. Interestingly, the plants survived salinity as high as 1,000?mM NaCl without displaying salt-induced toxicity symptoms. Despite significant increase in leaf Na+ and Cl? concentrations upon salt treatment, no significant effect on leaf relative water content was registered. Chlorophyll contents and the gas exchange parameters showed a significant stimulation at the optimal salinity (200?mM NaCl) followed by a decline at higher salinities. Extreme salinity hardly impacted the maximal efficiency of photosystem II photochemistry (F v/F m), but a marked decrease in the relative quantum yield of photosystem II (??PSII) was observed, along with a significant increase in non-photochemical quenching (NPQ). Leaf malondialdehyde and carotenoid contents were generally unaffected following salt exposure, whereas those of anthocyanins, polyphenols, and proline increased significantly, being maximal at 1,000?mM NaCl. Leaf superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and glutathione reductase (EC 1.6.4.2) activities were significantly stimulated by salinity, whereas catalase (EC 1.11.1.6) activity was maximal in the 0?C400?mM NaCl range. As a whole, protecting the photosynthetic machinery from salt-induced photodamage together with the sustained antioxidant activity may account for the performance of A. portulacoides under high salinity.  相似文献   

6.
Spatial d/h heterogeneity of leaf water   总被引:9,自引:0,他引:9       下载免费PDF全文
The mean δD value of petiole water of Pterocarpus indicus Willd (δD = −9.0 ± 2.5‰, n = 3) was not significantly different from the mean value of stem water (−8.3 ± 2.8‰, n = 3). δD values of main vein water ranged from −11.1 to + 12.0‰ (n = 14) and increased along the main vein from petiole to the tip of leaves. Mesophyll water was highly enriched in deuterium (mean δD = +32.0 ± 2.0‰, n = 19) when compared with stem, petiole, and vein water. δD values of mesophyll water for different areas of the lamina, however, were not homogenous and could differ by as much as 20‰.  相似文献   

7.
Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite.  相似文献   

8.
9.
Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C.  相似文献   

10.
The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ13C of dissolved inorganic carbon from vent fluids ranged from −4.6‰ to 0.8‰ at E2 and from −4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ13C was observed in peltospiroid gastropods (−30.0‰ to −31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ13C occurred in Kiwa sp. (−19.0‰ to −10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ13C and δ34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites.  相似文献   

11.
Carbon isotope fractionation by structurally and catalytically distinct ribulose-1,5-bisphosphate carboxylases from one eucaryotic and four procaryotic organisms has been measured under nitrogen. The average fractionation for 40 experiments was −34.1 ‰ with respect to the δ13C of the dissolved CO2 used, although average fractionations for each enzyme varied slightly: spinach carboxylase, −36.5 ‰; Hydrogenomonas eutropha, −38.7 ‰; Agmenellum quadruplicatum, −32.2 ‰; Rhodospirillum rubrum, −32.1 ‰; Rhodopseudomonas sphaeroides peak I carboxylase, −31.4 ‰; and R. sphaeroides peak II carboxylase, −28.3 ‰. The carbon isotope fractionation value was largely independent of method of enzyme preparation, purity, or reaction temperature, but in the case of spinach ribulose-1,5-bisphosphate carboxylase fractionation, changing the metal cofactor used for enzyme activation had a distinct effect on the fractionation value. The fractionation value of −36.5 ‰ with Mg2+ as activator shifted to −29.9 ‰ with Ni2+ as activator and to −41.7 ‰ with Mn2+ as activator. These dramatic metal effects on carbon isotope fractionation may be useful in examining the catalytic site of the enzyme.  相似文献   

12.
The haptophyte microalga Tisochrysis lutea was heterotrophically grown in F2 medium with different combinations of pH and salinity. Growth, oil content and fatty acids (FAs) profile were determined under each set of conditions. The salinity was adjusted using NaCl at concentrations of 0.4, 0.6, 0.8, or 1.0 M, while pH was adjusted at 7, 8, or 9, and heterotrophic growth was performed using organic carbon in the form of sugar cane industry waste (CM). Fatty acid methyl esters (FAMEs) were identified by gas chromatography. The results showed that pH of 8.0 was the optimal for dry weight and oil production, regardless of the salinity level. At pH 8.0, growth at a salinity of 0.4 M NaCl was optimal for biomass accumulation (1.185 g L-1). Under these conditions, the maximum growth rate was 0.055 g L-1 d-1, with a doubling time of 17.5 h and a degree of multiplication of 2.198. Oil content was maximal (34.87%) when the salinity was 0.4 M and the pH was 9.0. The ratio of saturated to unsaturated FAs was affected by the pH value and salinity, in that unsaturated FAs increased to 58.09% of the total FAs, considerably greater than the value of 40.59% obtained for the control (0.4 M NaCl and pH 8.0).  相似文献   

13.
Properties of thylakoids isolated from leaves of three salt tolerant species, Avicennia germinans L., Avicennia marina var resinifera, and Beta vulgaris L., were not affected by the salinity in which the plants were grown. With increase in the growth salinity from 50 to 500 millimolar NaCl, there were no major effects on the per chlorophyll concentrations of lipids or proteins, or on the rates of uncoupled electron transport per chlorophyll mediated by either the whole chain or the partial reactions of photosystems I and II. Responses of the partial and whole chain reactions to variation in the sorbitol and NaCl concentrations in the assay media were independent of the salinity experienced during leaf growth and not substantially different from those of a salt-sensitive species, Cucurbita sativus L. Uncoupled rates of electron flow from water to p-benzoquinone mediated by photosystem II were insensitive to the NaCl concentration unless thylakoids were rendered Cl deficient by treatment with uncoupler under alkaline conditions. Loss of 65% to 85% of the photosystem II activity in these Cl-deficient thylakoids was restored by addition of 10 to 20 millimolar Cl.  相似文献   

14.
The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 ± 1.2‰, 32.5 ± 0.6‰, and 35.6 ± 1.4‰ for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 ± 4.2‰) was similar to that produced during hydroxylamine oxidation (33.5 ± 1.2‰) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 ± 1.7‰), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (−0.6 ± 1.9‰ and −0.5 ± 1.9‰, respectively) were similar to those during nitrate reduction (−0.5 ± 1.9‰ and −0.5 ± 0.6‰, respectively), indicating no influence of either substrate on site preference. Site preferences of ~33‰ and ~0‰ are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.  相似文献   

15.
《Process Biochemistry》2010,45(10):1730-1737
An aerobic xylanolytic Gracilibacillus sp. TSCPVG growing at moderate to extreme salinity (1–30%) and neutral to alkaline pH (6.5–10.5) was isolated from the salt fields near Sambhar district of Rajasthan, India. β-xylanase (18.44 U/ml) and β-xylosidase (1.01 U/ml) were produced in 60 h in the GSL-2 mineral base medium with additions of (in g/l) Birchwood xylan (7.5), yeast extract (10.0), tryptone (8.0), proline (2.0), thiamine (2.0), Tween-40 (2.0) and NaCl (35) at pH 7.5, 30 °C and 180 rpm. The β-xylanase was active within a broad salinity range (0–30% NaCl), pH (5.0–10.5) and temperature (50–70 °C). It exhibited maximal activity with 3.5% NaCl, pH 7.5 at 60 °C. It was extremely halotolerant retaining more than 80% of activity at 0 and 30% NaCl and alkali-tolerant retaining 76% of activity at pH 10.5. The acetone precipitated xylanase was highly stable (100%) at variable salinities of 0–30% NaCl, pH of 5.0–10.5 and temperatures of 0–60 °C for 48 h. HPLC analysis showed xylose, arabinose and xylooligosaccharides as hydrolysis products of xylan. This is the first report on hemi-cellulose degrading halo-alkali-thermotolerant enzyme from a moderately halophilic Gram-positive Gracilibacillus species.  相似文献   

16.
In October 2010, the vertical distribution, biodiversity and maturity stages of Chaetognatha species were investigated at four stations located off Walvis Bay, Namibia. Seventeen species were detected and classified as pelagic, shallow-mesopelagic, deep-mesopelagic and bathypelagic species based upon the weighted mean depth derived from their average vertical distribution. High abundances of Chaetognatha were found in the upper 100 m at all stations of the Walvis Bay transect with a maximum value of 20837 ind. 1000 m−3 at the outer shelf station near the surface. The community was dominated by species of the Serratodentata group. Furthermore, the distribution of Chaetognatha did not seem to be influenced by low oxygen concentrations. Stable isotope ratios of carbon and nitrogen in Chaetognatha were determined for seven different areas located off northern Namibia. The values of δ15N ranged from 6.05 ‰ to 11.39 ‰, while the δ13C values varied between −23.89 ‰ and −17.03 ‰. The highest values for δ15N were observed at the Walvis Bay shelf break station. The lowest δ13C values were found at the Rocky Point offshore station, which was statistically different from all other areas. Stable isotopes of carbon and nitrogen were determined for four taxa (Sagitta minima, Planctonis group, Sagitta enflata, Sagitta decipiens). In this case, the δ15N values ranged from 6.17 ‰ to 10.38 ‰, whereas the δ13C values varied from −22.70 ‰ to −21.56 ‰. The lowest δ15N values were found for S. minima. The C- and N-content revealed maximum C-values for S. decipiens and maximum N-values for the Planctonis group. The C:N ratio of Chaetognatha ranged between 5.25 and 6.20. Overall, Chaetognatha are a diverse group in the pelagic food web of the Benguela Upwelling System and act as competitors of fish larvae and jelly fish by preying on copepods.  相似文献   

17.
A moderately halophilic bacterium, Bacillus sp., isolated from rotting wood on the seashore in Nauru, produced an extracellular nuclease when cultivated aerobically in media containing 1 to 2 M NaCl. The enzyme was purified from the culture filtrate to an electrophoretically homogeneous state by ethanol precipitation, DEAE-Sephadex A-50 column chromatography, and Sephadex G-200 gel filtration. The enzyme consisted of two charge isomers and showed both RNase and DNase activities. Molecular weight was estimated to be 138,000 by Sephadex G-200 gel filtration. The enzyme had marked halophilic properties, showing maximal activities in the presence of 1.4 to 3.2 M NaCl or 2.3 to 3.2 M KCl. The enzyme hydrolyzed thymidine-5′-monophosphate-p-nitrophenyl ester at a rate that increased with NaCl concentration up to 4.8 M. In the presence of both Mg2+ and Ca2+, activity was greatly enhanced. The activity was lost by dialysis against water and low-salt buffer, but it was protected when 10 mM Ca2+ was added to the dialysis buffer. When the inactivated enzyme was dialyzed against 3.5 M NaCl buffer as much as 68% of the initial activity could be restored. The enzyme exhibited maximal activity at pH 8.5 and at 50°C on DNA and at 60°C on RNA and attacked RNA and DNA exonucleolytically and successively, producing 5′-mononucleotides.  相似文献   

18.
The growth and nodulation ofTrifolium alexandrinum were compared at six levels (0 - 1.2 % NaCl) of salinity. Dry mass of shoots and roots, 14 and 20 weeks after the commencement of salinity treatment, increased at low levels of salinity (0.1 - 0.2 % NaCl) but decreased with higher NaCl concentrations (0.4 - 1.2 %). Nodulation occurred at NaCl concentrations up to 0.8 %. Nodule mass decreased with increasing salinity levels. The nodule size remained unaffected at NaCl concentrations up to 0.4 % but was reduced at higher concentrations.  相似文献   

19.
To evaluate the effect of salinity on the catalyzing ability of β-glucosidase in the marine fungus Aspergillus niger, the thermodynamic parameters of the β-glucosidase were investigated at different salinities. At the optimum salinity of 6% NaCl (w/v) solution, the optimum temperature and pH of the β-glucosidase activity was 66 °C and 5.0, respectively. Under these conditions, the β-glucosidase activity increased 1.46 fold. The half-life of denaturation in 6% NaCl (w/v) solution was approximately twice as long as that in NaCl free solution. The Gibb's free energy for denaturation, ΔG, was 2 kJ/mol higher in 6% NaCl (w/v) solution than in NaCl free solution. The melting point (68.51 °C) in 6% NaCl (w/v) solution was 1.71 °C higher than that (66.80 °C) in NaCl free solution. Similarly, the activity and thermostability of the pure β-glucosidase increased remarkably at high salinity. The thermostable β-glucosidase, of which the activity and the thermostability are remarkably enhanced at high salinity, is valuable for industrial hydrolyzation of cellulose in high salinity environments.  相似文献   

20.
Sand dune ecosystems are one of the areas most affected by the introduction of invasive species which represents a threat for biodiversity conservation. Their invasion patterns and spread may depend on their salinity tolerance, besides other factors. To test this hypothesis, we investigated the effects of salt stress on seed germination and on the activity of antioxidant enzymes (catalase, CAT; ascorbate peroxidase, APX; peroxidase, POX; and glutathione reductase, GR) in two legume species, an invasive, Acacia longifolia (Andrews.) Willd., and a native, Ulex europaeus (L.), very common in the sand dunes of the coast of Portugal. Salt stress was induced by adding NaCl at different concentrations, 0, 50, 100 and 200 mM, for 15 days. Results showed that the highest germination percentages were obtained in distilled water (control) and that, with increasing salt concentration, seed germination was delayed and decreased in both species. Inhibition of germination was higher in the native species, only 3% of seeds germinated at 100 mM and no seeds germinated at 200 mM NaCl. In the invasive species, the reduction was higher at 200 mM NaCl (16%). Considering the coefficient of germination velocity, a decrease in both species with increasing NaCl concentration was observed. The CAT and GR activities decreased in A. longifolia with increasing salinity. In turn, APX activity significantly increased as NaCl concentration increased while the POX activities declined at the highest NaCl concentration. On the other hand, at 50 mM NaCl lower activity of CAT and APX and higher GR and POX were found in U. europaeus. In both species, protein content increased as NaCl concentration increased. In addition, it seems that APX activities play an essential role in the scavenging reactive oxygen species (ROS). These results suggest that the seeds of the invasive legume A. longifolia are more tolerant to salinity than the native legume U. europaeus, and seem better equipped to handle the physiological stress of high salinity, which may contribute to its invasive ability in sand dunes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号