首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The large elasmoid scales of the Australian lungfish, Neoceratodusforsteri, are formed within the dermis by unpigmented scleroblasts, growing within a collagenous dermal pocket below a thick glandular epidermis. The first row of scales, on the trunk of the juvenile lungfish, appears below the lateral line of the trunk, single in this species, at around stage 53. The scales, initially circular in outline, develop anteriorly and posteriorly from the point of initiation in the mid‐trunk region, and rows are added alternately below the line, and above the line, until they reach the dorsal or ventral midline, or the margins of the fins. Scales develop later on the ventral surface of the head, from a separate centre of initiation. Scales consist of three layers, all produced by scleroblasts of dermal origin. The outermost layer of interlocking plates, or squamulae, consists of a mineralised matrix of fine collagen fibrils, covered by unmineralised collagen and a single layer of cells. Squamulae of the anterior and lateral surfaces are ornamented with short spines, and the mineralised tissue of the posterior surface is linked to the pouch by collagen fibrils. The innermost layer, known as elasmodin, consists of bundles of thick collagen fibrils and cells arranged in layers. An intermediate layer, made up of collagen fibrils, links the outer and inner layers. The elasmoid scales of N. forsteri can be compared with scale types among other osteichthyan groups, although the cellsand canaliculi in the mineralised squamulae bear littleresemblance to typical bone. J.Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Aim Insect biodiversity is often positively associated with habitat heterogeneity. However, this relationship depends on spatial scale, with most studies focused on differences between habitats at large scales with a variety of forest tree species. We examined fine‐scale heterogeneity in ground‐dwelling beetle assemblages under co‐occurring trees in the same subgenus: Eucalyptus melliodora A. Cunn. ex Schauer and E. blakelyi Maiden (Myrtaceae). Location Critically endangered grassy woodland near Canberra, south‐eastern Australia. Methods We used pitfall traps and Tullgren funnels to sample ground‐dwelling beetles from the litter environment under 47 trees, and examined differences in diversity and composition at spatial scales ranging from 100 to 1000 m. Results Beetle assemblages under the two tree species had distinctive differences in diversity and composition. We found that E. melliodora supported a higher richness and abundance of beetles, but had higher compositional similarity among samples. In contrast, E. blakelyi had a lower abundance and species richness of beetles, but more variability in species composition among samples. Main conclusions Our study shows that heterogeneity in litter habitat under co‐occurring and closely related eucalypt species can influence beetle assemblages at spatial scales of just hundreds of metres. The differential contribution to fine‐scale alpha and beta diversity by each eucalypt can be exploited for conservation purposes by ensuring an appropriate mix of the two species in the temperate woodlands where they co‐occur. This would help not only to maximize biodiversity at landscape scales, but also to maintain heterogeneity in species richness, trophic function and biomass at fine spatial scales.  相似文献   

3.
Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes   总被引:1,自引:0,他引:1  
An examination of the ontogeny of the lateral line trunk canal and the diversity of adult trunk canal patterns among cichlids indicates that bidirectional canal formation is a general ontogenetic pattern in the Cichlidae with the exception of Cichla and those few species with a complete trunk canal pattern. In addition to the tubed scales which make up the trunk canal, some lateral line scales have pits containing superficial neuromasts. These are recognized as components of the lateral line system of the trunk in adult cichlids for the first time. Eight trunk canal patterns that are variations on a simple disjunct pattern are defined among the 17 cichlid genera examined. Using bidirectional canal formation as a developmental model, these patterns can be placed along an ontogenetic spectrum. This suggests that heterochrony (alterations in the timing of development) is an important mechanism of evolutionary change in the lateral line system of the trunk in cichlid fishes.  相似文献   

4.
We studied the morphology and occurrence of splenic Langerhans‐like (LL) cells in species representing 11 orders of ray‐finned fishes, Actinopterygii. LL cells were frequent in spleen tissue of species among Cypriniformes, Esociformes, Salmoniformes, and Pleuronectiformes. These cells contained granules which resembled Birbeck granules known to occur in mammalian Langerhans cells. The ultrastructure of LL cells in Northern pike, Esox lucius, and in Atlantic halibut, Hippoglossus hippoglossus were similar to those reported in salmonids. LL cells found in cyprinids shared some characteristics with the LL cells in other Actinopterygii species, although unique structures distinguished them from the latter. They contained dense bodies within the Birbeck‐like (BL) granules, a characteristic that was never observed in species outside the Cypriniformes. Two types of BL granules were characterized in cyprinid LL cells. The ultrastructure of BL granules across the species is discussed. LL cells in all Actinopterygii species demonstrated close contacts with nearby cells, characterized by adherens‐like junctions. Additionally, multivesicular bodies were present within the cytoplasm and large aggregates of exosomes were observed closely associated with the plasma membrane suggesting their release from the cells. These structures are discussed in relation to mammalian dendritic cells. Macrophages found in European perch, Perca fluviatilis, blue gourami, Trichogaster trichopterus, and Atlantic halibut, Hippoglossus hippoglossus contained lysosomes and residual bodies with structures resembling Birbeck granules. These granules and cells were clearly distinct from LL cells. J. Morphol. 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The lateral line system of teleost fishes consists of an array of superficial and canal neuromasts (CN). Number and distribution of neuromasts and the morphology of the lateral line canals vary across species. We investigated the morphology of the lateral line system in four diurnal European cyprinids, the limnophilic bitterling (Rhodeus sericeus), the indifferent gudgeon (Gobio gobio), and ide (Leuciscus idus), and the rheophilic minnow (Phoxinus phoxinus). All fish had lateral line canals on head and trunk. The total number of both, CN and superficial neuromasts (SN), was comparable in minnow and ide but was greater than in gudgeon and bitterling. The ratio of SNs to CNs for the head was comparable in minnow and bitterling but was greater in gudgeon and ide. The SN‐to‐CN ratio for the trunk was greatest in bitterling. Polarization of hair cells in CNs was in the direction of the canal. Polarization of hair cells in SNs depended on body area. In cephalic SNs, hair cell polarization was dorso‐ventral or rostro‐caudal. In trunk SNs, it was rostro‐caudal on lateral line scales and dorso‐ventral on other trunk scales. On the caudal fin, hair cell polarization was rostro‐caudal. The data show that, in the four species studied here, number, distribution, and orientation of CNs and SNs cannot be unequivocally related to habitat. J. Morphol. 275:357–370, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Non‐native fish species pose a major threat to local fish populations and aquatic ecosystems in general. Invasive gobies are a particular focus of research, but with partly inconsistent results. While some studies reported severe detrimental impacts on native species, others have concluded less serious or neutral effects. We provide results from a large‐scale, multi‐annual fish monitoring program on the occurrence and abundance of non‐native fishes in the main stem of a free‐flowing section of the Austrian Danube. Special emphasis was placed on identifying positive or negative interactions of invasive gobies with native species. Whereas most non‐native species occurred too sporadically or were too few in number to infer a direct threat on the local fish community, invasive gobies were among the most common fishes throughout all sampling years. Co‐occurrence analyses revealed species‐ and mesohabitat type‐specific associations of gobies with native species, which were primarily positive. Notably, native predators such as asp, burbot, or perch probably benefit from the ubiquitous gobies. Two characteristic fluvial fishes revealed negative associations with invasive gobies, namely barbel (Barbus barbus) and Danube whitefin gudgeon (Romanogobio vladykovi): they appear to avoid habitats occupied by gobies. Accordingly, high abundances of round and bighead goby most likely resulted in population losses of barbel and whitefin gudgeon, respectively. Overall, our results indicate a limited negative impact of non‐native species in the sampling area. This is because only two out of 51 occurring species were found to be adversely affected by gobies, the share of co‐occurrences with native species was high, and other non‐native species were generally rare. Nevertheless, invasions are highly dynamic, and new non‐native species are likely to occur in the Austrian Danube, calling for continued monitoring and awareness.  相似文献   

7.
The lateral line of aquaculture fishes has rarely been studied although it is a very important anatomical organ that could serve as an inexpensive and easy tool to distinguish farmed from wild individuals. In the present study, lateral line deformities were examined in both wild and farmed sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) specimens to try to detail all possible differences between them. In order to do so, the morphology of the trunk lateral line in wild and farmed adults was examined whereby two major deformities were observed in both species: the ‘scale pocket’ deformity (14–40% incidence in all groups) where the specialized scales are missing but the canal underneath is present and the scale print is obvious, and the ‘somatic scales’ deformity (14–56% incidence in farmed individuals only) where the missing lateral line is covered with normal somatic scales. Histological examination confirmed the macroscopic observations in that the lateral line mechanism was present – although damaged – beneath the scale pocket deformity and completely absent beneath the somatic scales deformity. It is argued that the scale pocket deformity is a result of an accident during the life of the fish whereas the somatic scales deformity is an actual deformity in development.  相似文献   

8.
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co‐occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait‐based tests to gain insights into community processes at four spatial scales in a large stem‐mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait‐based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co‐occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait‐based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.  相似文献   

9.
Species that successfully colonized subterranean environments are subject to two opposing selection processes. Stringent abiotic factors select for convergent adaptations, such as loss of eyes and pigments, while interspecific competition drives between‐species divergence. Subterranean species can resolve opposing selection by adaptation to physically different microhabitats. Yet, species frequently co‐occur in physically homogeneous subterranean habitats, like interstitial. These co‐occurrences in such a narrow ecological context can be explained either by equalizing mechanisms, in which neither of the co‐occurring species has a competitive advantage, or by more complex niche models that include species’ differentiation along a trophic niche axis. We tested these hypotheses using the amphipod genus Niphargus. We analysed Europe‐wide co‐occurrence records of Niphargus species from interstitial habitats, split into six independent large‐scale regions. Firstly, we addressed whether species’ pairwise co‐occurrences are random using a probabilistic model. Secondly, we tested whether species cluster into distinct functional–morphological groups and whether ecologically or phylogenetically distinct species are more likely to co‐occur. We found that 68% of species co‐occurrences were not different from random expectation, indicating that most species had access to most sites within each region. The remaining 32% co‐occurred either significantly more or less often than expected by chance. Cluster analysis of functional morphological characters showed that interstitial species belong to two feeding types, micro‐ and macrofeeders, likely representing two peaks of the interstitial adaptive landscape, and hinting that niche divergence, as a mechanism allowing coexistence, is favoured. Finally, we found that the number of co‐occurrences increases with increasing differentiation of functional morphology, but not phylogenetic differences. We conclude that ecological differentiation may be important in shaping such interstitial communities.  相似文献   

10.
Aim To test whether species groups (i.e. assemblages of species co‐occurring in nature) that are statistically derived at one scale (broad, medium, or fine scale) can be transferred to another scale, and to identify the driving forces that determine species groups at the various scales. Location Northern Bohemia (Czech Republic, central Europe) in the Je?tědský h?bet mountain range and its neighbourhood. Methods Three data sets were sampled: a floristic data set at the broad scale, another floristic data set at the intermediate scale, and a vegetation data set at the habitat scale. First, in each data set, species groups were produced by the COCKTAIL algorithm, which ensures maximized joint occurrence in the data set using a fidelity coefficient. Corresponding species groups were produced in the individual data sets by employing the same species for starting the algorithm. Second, the species groups formed in one data set, i.e. at a particular scale, were applied crosswise to the other data sets, i.e. to the other scales. Correspondence of a species group formed at a particular scale with a species group at another scale was determined. Third, to highlight the driving factors for the distribution of the plant species groups at each scale, canonical correspondence analysis was carried out. Results Twelve species groups were used to analyse the transferability of the groups across the three scales, but only six of them were found to be common to all scales. Correspondence of species groups derived from the finest scale with those derived at the broadest scale was, on average, higher than in the opposite direction. Forest (tree layer) cover, altitude and bedrock type explained most of the variability in canonical correspondence analysis across all scales. Main conclusions Transferability of species groups distinguished at a fine scale to broader scales is better than it is in the opposite direction. Therefore, a possible application of the results is to use species groups to predict the potential occurrence of missing species in broad‐scale floristic surveys from fine‐scale vegetation‐plot data.  相似文献   

11.
The possibility of using separate signs of microstructure of skin derivatives to understand phylogenesis processes at various hierarchical levels on the example of elasmoid scale of bony fish, feathers of Paleognathae birds, hepatoid glands, and mammal hair was demonstrated and discussed. It was shown that (1) the presence of toothed sclerite growths on the surface of the elasmoid scale of bony fish provided with a central canal can serve as a proof of the evolutional relation of placoid and elasmoid scales; (2) particularities of the microstructure of feathers of Paleognathae birds accord with the branching of their phylogenetic tree; (3) the development of hepatoid glands suggests a phylogenetic relatedness of ancestor forms of cavicorns, Canidae, and Felidae; (4) the subtle construction of horse hair shows the succession of the ancient E. lenensis and northern aborigine breeds of the domestic horse, the direction of the historical process of horse domestication and adaptation of these animals to environmental conditions; (5) similarities in the microstructure of hair of the giant and red panda and bears indicate their evolutional links with Ursidae rather than raccoons.  相似文献   

12.
The objectives of this study were (1) to determine whether the presence or absence of prairie fishes can be modelled using habitat and biotic characteristics measured at the reach and catchment scales and (2) to identify which scale (i.e. reach, catchment or a combination of variables measured at both scales) best explains the presence or absence of fishes. Reach and catchment information from 120 sites sampled from 1999 to 2004 were incorporated into tree classifiers for 20 prairie fish species, and multiple criteria were used to evaluate models. Fewer than six models were considered significant when modelling individual fish occurrences at the reach, catchment or combined scale, and only one species was successfully modelled at all three scales. The scarcity of significant models is probably related to the rigorous criteria by which these models were evaluated as well as the prevalence of tolerant, generalist fishes in these stochastic and intermittent streams. No significant differences in the amount of reduced deviance, mean misclassification error rates (MER), and mean improvement in MER metrics was detected among the three scales. Results from this study underscore the importance of continued habitat assessment at smaller scales to further understand prairie‐fish occurrences as well as further evaluations of modelling methods to examine habitat relationships for tolerant, ubiquitous species. Incorporation of such suggestions in the future may help provide more accurate models that will allow for better management and conservation of prairie‐fish species.  相似文献   

13.
Abundance patterns in ecological communities have important implications for biodiversity maintenance and ecosystem functioning. However, ecological theory has been largely unsuccessful at capturing multiple macroecological abundance patterns simultaneously. Here, we propose a parsimonious model that unifies widespread ecological relationships involving local aggregation, species‐abundance distributions, and species associations, and we test this model against the metacommunity structure of reef‐building corals and coral reef fishes across the western and central Pacific. For both corals and fishes, the unified model simultaneously captures extremely well local species‐abundance distributions, interspecific variation in the strength of spatial aggregation, patterns of community similarity, species accumulation, and regional species richness, performing far better than alternative models also examined here and in previous work on coral reefs. Our approach contributes to the development of synthetic theory for large‐scale patterns of community structure in nature, and to addressing ongoing challenges in biodiversity conservation at macroecological scales.  相似文献   

14.
The morphology and development of the multiple lateral line canals (canals 1–5 in dorsal to ventral sequence) on the trunk of two representative hexagrammids, Hexagrammos decagrammus and H. stelleri, were studied using histological and cleared and stained material. The morphology of the lateral line scales of which the lateral line canals are composed and the distribution of canal neuromasts within them were described quantitatively. We hypothesized that 1) one neuromast is contained in each lateral line scale and all five canals contain neuromasts, 2) all five canals develop similarly, and 3) the multiple trunk canals are an adaptation for the alteration of lateral line function. Lateral line scale morphology was found to be similar among the five canals in Hexagrammos decagrammus and H. stelleri. However, canal 3 is significantly wider than the other four canals. It is the only one of the five canals connected to the canals on the head, and more significantly, it is the only one of the five canals that contains neuromasts. The lateral line scales that comprise all five lateral line canals show the same pattern of development whether or not they contain neuromasts. The five canals develop asynchronously, and each of the canals develops either rostro-caudally or caudo-rostrally. Canal 3 is the homologue of a single trunk canal in other teleosts; canals 1, 2, 4, and 5 are apomorphic features of the two species of Hexagrammos. Canals 1, 2, 4, and 5 cannot be functional components of the lateral line system because they do not contain neuromasts and thus cannot be adaptations for the alteration of lateral line function. The occurrence of lateral line canals lacking neuromasts demands a direct assessment of neuromast distributions in the lateral line canals among fishes. Finally, our data suggest that the putative role of neuromasts in the morphogenesis of lateral line canals and the nature of neuromast-bone relationships need to be critically reevaluated. J. Morphol. 233:195–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Studies were carried out on the model of regeneration of mechanically removed elasmoid scales. Regenerating scales were morphologically analyzed using light and electron microscopy. It was found that the cells responsible for regeneration of the elasmoid scale plates could be classified as osteogenic elements. Little differentiated preosteoblasts were detected in the connective tissue of dermis on day 3 of regeneration, while partially calcified plates underlaid osteoblasts on day 7. The scale cover was fully restored on day 14 and it took two days for each bone plate to be formed. Osteocytes, fully differentiated osteogenic elements, were found in the deepest regions of newly formed scales.  相似文献   

16.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

17.
Owing to the paucity of data on the red muscle of deep‐sea fishes, the goal of this study was to determine the proportions of red muscle in demersal fishes and its enzymatic activities to characterize how routine swimming abilities change with depths of occurrence. Cross sectional analysis of the trunk musculature was used to evaluate the proportion of red muscle in 38 species of Californian demersal fishes living at depths between 100 and 3000 m. The activity of metabolic enzymes was also assayed in a sub‐set of 18 species. Benthic fishes had lower proportions of red muscle and lower metabolic enzyme activities than benthopelagic species. Mean proportion of red muscle declined significantly with depth with the greatest range of values in shallow waters and species with low proportions found at all depths. This suggested that while sedentary species occur at all depths, the most active species occur in shallow waters. Citrate synthase activity declined significantly with depth across all species, indicating that the mass‐specific metabolic capacity of red muscle is lower in deep‐sea species. These patterns may be explained by coupling of red and white muscle physiologies, a decrease in physical energy of the environment with depth or by the prevalence of anguilliform body forms and swimming modes in deep‐living species.  相似文献   

18.
Aim Scale dependence of patterns and processes remains one of the major unresolved problems in ecology. The responses of ecosystems to environmental stressors are reported to be strongly scale dependent, but projections of the effects of climate change on species' distributions are still restricted to particular scales and knowledge about scale dependence is lacking. Here we propose that the scale dependence of those species' niche dimensions related to climate change is strongly related to the strength of climatic cross‐scale links. More specifically, we hypothesize that the strong cross‐scale links between micro‐ and macroclimatic conditions are related to high cross‐scale similarity (low scale dependence) of species' realized temperature niches and, thus, species' spatial distributions. Location This study covers seven orders of magnitude of spatial scale, ranging from local‐scale (below a metre) and regional‐scale (kilometre) investigations in central European wetland ecosystems to continental‐scale (thousands of kilometres) studies of species' distributions. Methods We combined data on the spatial occurrence of species (vegetation records at local and regional scales, digitized distribution maps at the continental scale) with information about the corresponding temperature regime of vascular plant species occurring in environmentally stable wetland ecosystems characterized by strong cross‐scale links between micro‐ and macroclimatic conditions. Results We observed high cross‐scale similarity of the characteristics of species temperature niches across seven orders of magnitude of spatial scale. However, the importance of temperature as an abiotic driver decreased nonlinearly with decreasing scale, suggesting greater importance of additional (biotic) drivers of species' occurrence at small spatial scales. Main conclusions We report high cross‐scale similarity of realized temperature niches for species inhabiting ecosystems where small‐scale environmental noise is low and cross‐scale links between micro‐ and macroclimatic conditions are strong. By highlighting a strong relationship between abiotic and biotic cross‐scale similarity, our results will help to improve niche‐based species distribution modelling, one of the major assessment tools for determining the ecological effects of climate change.  相似文献   

19.
The question of whether species co‐occurrence is random or deterministic has received considerable attention, but little is known about how anthropogenic disturbance mediates the outcomes. By combining experiments, field surveys and analysis against null models, we tested the hypothesis that anthropogenic habitat modification disrupts species co‐occurrence in stream invertebrates across spatial scales. Whereas communities in unmodified conditions were structured deterministically with significant species segregation, catchment‐scale conversion to agriculture and sediment deposition at the patch‐ or micro‐habitat scale apparently randomized species co‐occurrences. This shift from non‐random to random was mostly independent of species richness, abundance and spatial scale. Data on community‐wide life‐history traits (body size, dispersal ability and predatory habits) and beta‐diversity indicated that anthropogenic modification disrupted community assembly by affecting biotic interactions and, to a lesser extent, altering habitat heterogeneity. These data illustrate that the balance between predictable and stochastic patterns in communities can reflect anthropogenic modifications that not only transcend scales but also change the relative forces that determine species coexistence. Research into the effects of habitat modification as a key to understanding global change should extend beyond species richness and composition to include species co‐occurrence, species interactions and any functional consequences.  相似文献   

20.
Histology and cytology of dermal scales of the gymnophionans Ichthyophis kohtaoensis and Hypogeophis rostratus reveal their structure and the nature of their mineralization. Dermal scales are small flat disks set in pockets in the transverse ridges of the skin. Each pocket contains several scales of various sizes. A ring of “hypomineralization” of varying diameter may occur on scales of a particular dermal pocket but bears no relation to the diameter of these scales. Three different layers form the scales and are seen on sections perpendicular to the surface. The cells of the basal layer lie deepest. Each of the two or three more superficial fibrous layers is composed of bundles of fibres that are oriented in parallel. The orientation varies among layers. The striation of the fiber scales has a periodicity comparable to that of the surrounding dermal fibers. Squamulae form a discontinuous layer on the scale surface and are the only mineralized part of the scale. The minerals are deposited both on the collagen fibers passing from the fibrous layers into the squamulae, and in the interfibrillar spaces. Spherical concretions, either isolated or coalescent, reaching up to 1 μm, are found on the surface of the squamulae. The dermal scales of Gymnophiona present some analogies with those of evolved bony fishes. Their characteristics could make them an original model for the study of mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号