首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.  相似文献   

2.
Mediterranean monk seals (MMS) are among the most endangered marine mammals on Earth. We screened mitochondrial variability (control region [CR1] and mitogenomes) of the species through a 180‐yr timeframe and extended by 20% (n = 205) the number of samples from a previous investigation, including historical specimens from 1833 to 1975. Although we detected two new, rare CR1 haplotypes, genetic diversity remained extremely low. Fully resolved haplotype median network and rarefaction analysis both suggested low probability for further unscreened haplotypes. There was no clear phylogeographic structure across the 12 marine subdivisions covered by the species’ range. Haplotypes previously considered diagnostic of the extant North Atlantic and eastern Mediterranean populations had their distributions extended into the western Mediterranean and the North Atlantic, respectively, by both historical and recent samples. Our study suggests that MMS have been genetically depauperate since at least the mid‐19th century, and that the massive 1997 die‐off in Western Sahara (North Atlantic) could have caused local haplotype extinctions. Our results support the hypothesis of past metapopulation dynamics across the species range, where the current segregation into geographically distant and genetically depauperate breeding populations (i.e., North Atlantic and eastern Mediterranean Sea) derives from the combined effects of historical extinctions, genetic drift on small breeding groups, and persistently low levels of genetic diversity.  相似文献   

3.
ABSTRACT: BACKGROUND: Domestication generally implies a loss of diversity in crop species relative to their wild ancestors because of genetic drift through bottleneck effects. Compared to native Mediterranean fruit species like olive and grape, the loss of genetic diversity is expected to be more substantial for fruit species introduced into Mediterranean areas such as apricot (Prunus armeniaca L.), which was probably primarily domesticated in China. By comparing genetic diversity among regional apricot gene pools in several Mediterranean areas, we investigated the loss of genetic diversity associated with apricot selection and diffusion into the Mediterranean Basin. RESULTS: According to the geographic origin of apricots and using Bayesian clustering of genotypes, Mediterranean apricot (207 genotypes) was structured into three main gene pools: 'Irano-Caucasian', 'North Mediterranean Basin' and 'South Mediterranean Basin'. Among the 25 microsatellite markers used, only one displayed deviations from the frequencies expected under neutrality. Similar genetic diversity parameters were obtained within each of the three main clusters using both all SSR loci and only 24 SSR loci based on the assumption of neutrality. A significant loss of genetic diversity, as assessed by the allelic richness and private allelic richness, was revealed from the 'Irano-Caucasian' gene pool, considered as a secondary centre of diversification, to the northern and southwestern Mediterranean Basin. A substantial proportion of shared alleles was specifically detected when comparing gene pools from the 'North Mediterranean Basin' and 'South Mediterranean Basin' to the secondary centre of diversification. CONCLUSIONS: A marked domestication bottleneck was detected with microsatellite markers in the Mediterranean apricot material, depicting a global image of two diffusion routes from the 'Irano-Caucasian' gene pool: North Mediterranean and Southwest Mediterranean. This study generated genetic insight that will be useful for management of Mediterranean apricot germplasm as well as genetic selection programs related to adaptive traits.  相似文献   

4.
The distribution of the genetic diversity and the population structure of Pagellus erythrinus were analysed using mitochondrial control region sequences and cytochrome b restriction profiles in a total of 128 and 508 individuals, respectively, that were collected from 15 sampling sites in the central Mediterranean Sea and from one site in the Atlantic Ocean. No population genetic structure was detected within the central Mediterranean and thus, the commonly recognized transition zones in the area do not seem to affect population connectivity. The comparison between the Mediterranean samples and the single Atlantic sample suggests weak differentiation between the two basins. Three mitochondrial lineages were identified, each including individuals from almost every sampling site. The haplotype and nucleotide diversity values, mismatch distribution and demographic parameters indicate that the sympatry of these lineages can be ascribed to a period of isolation followed by genetic divergence, population expansion and secondary contact, all of which are likely to be associated with climatic oscillations that occurred during the middle and late Pleistocene.  相似文献   

5.
Blue jack mackerel Trachurus picturatus collected at six sampling locations of the north-east Atlantic Ocean (Azores, Madeira, Canaries, and Matosinhos, Peniche and Portimão, mainland Portugal) and one location in the Mediterranean (Sicily), were used to examine the genetic structure of this species. Three mitochondrial gene regions (cytochrome c oxidase subunit I, cytochrome b and control region) were used to study the genetic structure of the species in Macaronesia, as well as to compare the genetic diversity of this region with published results from its eastern distribution. All markers indicated the absence of genetic structure among populations, with high indices of genetic diversity. These results suggest that the species went through a bottleneck event, followed by a recent population expansion. Moreover, the comparison with previously published results from the T. picturatus Mediterranean distribution suggests the existence of a single panmictic population throughout the species' full range. This was, however, an unexpected result since other methodologies have shown the presence of, at least, three different population-units in the NE Atlantic Ocean.  相似文献   

6.
Reduced genetic diversity due to founder effects often is expected for invasive populations. The present study examined two nuclear gene regions and one mitochondrial gene to evaluate the origins and genetic diversity of Gemma gemma, a ‘stow-away’ that was introduced to California more than 100 years ago with the importation of the Eastern oyster, Crassostrea virginica, from the United States’ Atlantic coast. A previous investigation involving mitochondrial DNA cytochrome-c-oxidase subunit I sequences reported no significant difference in haplotype diversity between the native and introduced populations; however, estimates of allelic (or haplotypic) variability are insensitive to losses of rare alleles that may accompany founder events and population bottlenecks. Estimates of allele richness and the distribution of rare alleles provide more sensitive indicators of such events. The present investigation of introduced and potential source populations identified lower allele richness and number of singleton alleles in California samples. Atlantic coast Gemma exhibit a sharp phylogeographic transition between northeastern (New York through New England) and mid-Atlantic (southern New Jersey through Virginia) subpopulations, which appear latitudinally inverted for the California Gemma populations. These genetic results, and information from the transportation history of the Eastern oyster, help to clarify processes involved in the introduction of this invasive species.  相似文献   

7.
The Stone-curlew Burhinus oedicnemus, a steppe bird species, is mainly distributed in the Mediterranean and Macaronesian regions, which are considered hotspots of biodiversity with priority for animal and plant species richness conservation. In this study, we investigated the genetic diversity of the Stone-curlew in the Mediterranean basin and in the Canary Islands by applying a multilocus approach. We analysed mitochondrial and nuclear markers in order to evaluate the genetic structure and the congruence between morphological subspecies and geographic samples. We found a significant level of genetic differentiation between Mediterranean and Canary Island populations with all markers. Both in the Mediterranean basin and in the Canary Islands, we found a significant level of genetic diversity with nuclear markers only. We identified seven population groups, including insular populations. The four subspecies described for the Western Palaearctic were confirmed with some changes in distribution range. In spite of habitat fragmentation and negative population trend, the Stone-curlew showed a significant level of genetic diversity and gene flow among continental populations. However, islands constitute important reservoirs of genetic diversity and a potential for the evolution of the species.  相似文献   

8.
The peracarid isopod, Stenosoma nadejda (Rezig 1989), until recently considered to be endemic of the Mediterranean region, was first reported in the Atlantic coast of southern Spain in 2001, and in 2006 abundant populations were discovered throughout the southwestern Portuguese coast. This fast expansion was intriguing because, as a direct brooder, this species has limited mechanisms for dispersal, such as rafting on seaweeds. Did S. nadejda recently extend its range into the Atlantic or was it overlooked in the past? We examined the patterns of genetic diversity and population differentiation accordingly by sequencing the cytochrome c oxidase subunit I mitochondrial gene from 75 individuals collected in five locations in Atlantic Iberia and one in the Mediterranean. Our results indicate that the newly discovered Atlantic populations of S. nadejda appear to be old and have long persisted on Atlantic shores rather than being a recent introduction. High levels of genetic diversity and geographic structure were uncovered in what was initially suspected to be an ‘invasive’ species. Recent changes in population dynamics may have made S. nadejda more conspicuous in the Atlantic shores, or a more comprehensive survey led to the recognition of this species where it was not expected.  相似文献   

9.
Understanding the factors explaining the observed patterns of genetic diversity is an important question in evolutionary biology. We provide the first data on the genetic structure of a Mediterranean octocoral, the yellow gorgonian Eunicella cavolini, along with insights into the demographic history of this species. We sampled populations in four areas of the Mediterranean Sea: continental France, Algeria, Turkey, and the Balearic and Corsica islands. Along French coasts, three sites were sampled at two depths (20 and 40 m). We demonstrated a high genetic structure in this species (overall FST = 0.13), and most pairwise differentiation tests were significant. We did not detect any difference between depths at the same site. Clustering analyses revealed four differentiated groups corresponding to the main geographical areas. The levels of allelic richness and heterozygosity were significantly different between regions, with highest diversity in Algeria and lowest levels in Turkey. The highest levels of private allelic richness were observed in Algeria followed by Turkey. Such contrasted patterns of genetic diversity were not observed in other Mediterranean octocorals and could be the result of different evolutionary histories. We also provide new empirical evidence of contrasting results between tests and model‐based studies of demographic history. Our results have important consequences for the management of this species.  相似文献   

10.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   

11.
The greater flamingo Phoenicopterus roseus is a long‐lived colonial waterbird species, characterized by a large range encompassing three continents, a very limited number of breeding sites, and high dispersal abilities. We investigated both the phylogeographic history and the contemporary extent of genetic differentiation between eight different Mediterranean breeding colonies of greater flamingos sampled between 1995 and 2009, using both mitochondrial DNA and microsatellite markers. We found no significant differences in allelic richness or private allelic richness in relation to colony size. Overall, no genetic population differentiation was detected using either mitochondrial or microsatellite markers. F‐statistics and Bayesian clustering methods did not support any significant genetic structure. Analysis of both mitochondrial DNA and microsatellites indicated that populations have undergone a bottleneck followed by rapid growth and expansion. The average time since expansion was estimated to be 696 421 yr (90% CI: 526 316–1 131 579 yr). We discuss our results in relation to both the possible historical events accounting for the present genetic structure and relevance to conservation and management of the species.  相似文献   

12.
Eight samples of the hake, Merluccius merluccius L., from the Mediterranean basin (370 fishes total) and one from the Atlantic ocean (50 fishes) were analysed in order to assess genetic variability and describe genetic population structure. Five polymorphic protein coding loci were scored (ADH*, PGI‐1*, PGI‐2*, PGM* and SOD‐1*) in eight samples, together with a haplotype variation of four samples, obtained from polymerase chain reaction/restriction fragment length polymorphism (PCR–RFLP) analysis on the mitochondrial DNA control region. The average value for observed heterozygosity was typically higher than expected (showing an excess of heterozygotes among the samples) whereas the haplotype diversity at mtDNA was very low. Samples originating from inside the Mediterranean basin appeared genetically homogeneous but the sample originating from the Atlantic was heterogeneous compared with the Mediterranean populations. Nuclear and mitochondrial gene analysis showed similar results supporting that the Strait of Gibraltar may be considered as a breakpoint area to gene flow.  相似文献   

13.
Restriction analysis of mitochondrial DNA (mtDNA) from 204 individuals of swordfish (Xiphias gladius) revealed no differentiation among samples from three sites in the Mediterranean Sea (Greece, Italy, Spain), but a high degree of differentiation between Mediterranean samples and a sample from the Gulf of Guinea. A fifth sample from the Atlantic side of the Straits of Gibraltar (Tarifa) consisted mostly of mitotypes that are common in the Mediterranean, but contained several of mtDNA types of the Guinea sample not found in the Mediterranean. We conclude that, in spite of free migration of swordfish across the Straits of Gibraltar, little genetic exchange occurs between the populations inhabiting the Mediterranean Sea and the tropical Atlantic ocean. This is the first evidence of genetic differentiation among geographic populations of this highly mobile species that supports a world-wide fishery.  相似文献   

14.
We present the global phylogeography of the black sea urchin Arbacia lixula, an amphi-Atlantic echinoid with potential to strongly impact shallow rocky ecosystems. Sequences of the mitochondrial cytochrome c oxidase gene of 604 specimens from 24 localities were obtained, covering most of the distribution area of the species, including the Mediterranean and both shores of the Atlantic. Genetic diversity measures, phylogeographic patterns, demographic parameters and population differentiation were analysed. We found high haplotype diversity but relatively low nucleotide diversity, with 176 haplotypes grouped within three haplogroups: one is shared between Eastern Atlantic (including Mediterranean) and Brazilian populations, the second is found in Eastern Atlantic and the Mediterranean and the third is exclusively from Brazil. Significant genetic differentiation was found between Brazilian, Eastern Atlantic and Mediterranean regions, but no differentiation was found among Mediterranean sub-basins or among Eastern Atlantic sub-regions. The star-shaped topology of the haplotype network and the unimodal mismatch distributions of Mediterranean and Eastern Atlantic samples suggest that these populations have suffered very recent demographic expansions. These expansions could be dated 94–205 kya in the Mediterranean, and 31–67 kya in the Eastern Atlantic. In contrast, Brazilian populations did not show any signature of population expansion. Our results indicate that all populations of A. lixula constitute a single species. The Brazilian populations probably diverged from an Eastern Atlantic stock. The present-day genetic structure of the species in Eastern Atlantic and the Mediterranean is shaped by very recent demographic processes. Our results support the view (backed by the lack of fossil record) that A. lixula is a recent thermophilous colonizer which spread throughout the Mediterranean during a warm period of the Pleistocene, probably during the last interglacial. Implications for the possible future impact of A. lixula on shallow Mediterranean ecosystems in the context of global warming trends must be considered.  相似文献   

15.
The basking shark (Cetorhinus maximus) is found in temperate waters throughout the world's oceans, and has been subjected to extensive exploitation in some regions. However, little is known about its current abundance and genetic status. Here, we investigate the diversity of the mitochondrial DNA control region among samples from the western North Atlantic, eastern North Atlantic, Mediterranean Sea, Indian Ocean and western Pacific. We find just six haplotypes defined by five variable sites, a comparatively low genetic diversity of pi=0.0013 and no significant differentiation between ocean basins. We provide evidence for a bottleneck event within the Holocene, estimate an effective population size (Ne) that is low for a globally distributed species, and discuss the implications.  相似文献   

16.
Summary This study demonstrates the impact of natural factors and human activities on biodiversity at gene level on a keystone Mediterranean forest ecosystem species. We monitored the within and among population gene diversity of Cedrus libani, a forest tree species of the Eastern Mediterranean mountains. We used paternally inherited chloroplast microsatellites (57 haplotypes) and bi-parentally inherited isozymes (12 loci) to estimate allelic richness, heterozygosity, and differentiation in 18 natural and 1 planted populations from Turkey and Lebanon. We showed that there is a phylogeographic structure in C. libani, and that forests from Lebanon and Turkey constitute two genetically isolated groups which probably arose from distinct refugia after the last Quaternary glacial cycle. We found extensive gene flow and relatively low differentiation in Turkey, as well as little evidence of genetic drift within populations. However, one population we analyzed, which was planted more than 20 centuries ago, and is isolated from core populations in Turkey, demonstrated extremely low genetic diversity and deserves high conservation priority. In contrast, we found low gene flow, high differentiation and severe cases of genetic drift in Lebanon. As forests there are the remnants of millennia-long extensive deforestation, all deserve high conservation priority.  相似文献   

17.
We have assessed for the first time the phylogenetic relationships and biogeographic history of the crabs of the genus Maja that inhabit European coasts: M. brachydactyla, M. crispata, M. goltziana and M. squinado. Using mitochondrial markers, we have recovered a well-resolved phylogenetic tree that supports a single origin for the European species, most likely from an Indo-West Pacific ancestor during the Early Miocene. In this phylogeny, M. goltziana appears as the basal European species, with a sister lineage bifurcating into an Eastern Atlantic (M. brachydactyla) and a Mediterranean (M. crispata and M. squinado) clade. We propose the Tethyan Seaway as the initial colonization route, although an entrance through South Africa cannot be discounted. The Eastern Atlantic/Mediterranean split seems to predate the Messinian salinity crisis, which, in turn, could have promoted the recent divergence within the Mediterranean. In addition, Pleistocene glaciations could explain the current diversity in the Eastern Atlantic Ocean, where a unique mitochondrial lineage is found. According to this, the genetic profile of South African crabs appears to belong to M. brachydactyla, questioning the validity of the putative species M. capensis.  相似文献   

18.
The present study investigates the genetic diversity of Scarus ghobban, a recently introduced parrotfish in the Mediterranean Sea via the Suez Canal. Two mitochondrial and one nuclear DNA regions were sequenced and phylogenetic relationships investigated, from samples collected from Lebanon and across its natural range. Scarus ghobban clustered in two major clades, Pacific Ocean and Indian Ocean, indicating strong population structure, or cryptic speciation. Expectedly, Mediterranean samples clustered with Indian Ocean-Red Sea individuals. However, unlike other recent Lessepsian invaders, S. ghobban displayed high genetic diversity. These results underscore that genetic diversity is a poor predictor of success of an invasive species.  相似文献   

19.
Aim The aim of this study was to describe the composition, community structure and biogeographical variation of subtidal algal assemblages dominated by the brown alga Cystoseira crinita across the Mediterranean Sea. Location The Mediterranean coast, from Spain (1°25′ E) to Turkey (30°26′ E). Methods Data on the species composition and structure of assemblages dominated by the species C. crinita were collected from 101 sites in nine regions across the Mediterranean Sea. Multivariate and univariate statistical tools were used to investigate patterns of variation in the composition of the assemblages among sites and regions, and to compare these with previously defined biogeographical regions. Linear regressions of species richness versus longitude and versus latitude were also carried out to test previously formulated hypotheses of biodiversity gradients in the Mediterranean Sea. Results The main features characterizing C. crinita‐dominated assemblages across the Mediterranean included a similar total cover of species, a similar cover of C. crinita, and consistency in the presence of the epiphyte Haliptilon virgatum. Biogeographical variation was detected as shifts in relative abundances of species among regions, partly coinciding with previously described biogeographical sectors. A significant positive correlation was found between species richness and latitude, while no significant correlation was detected between species richness and longitude. Main conclusions The patterns of variation in community structure detected among the studied regions reflected their geographical positions quite well. However, latitude seemed to contribute more to the explanation of biological patterns of diversity than did geographical distances or boundaries, which classically have been used to delimit biogeographical sectors. Moreover, the positive correlation between species richness and latitude reinforced the idea that latitude, and possibly temperature as a related environmental factor, plays a primary role in structuring biogeographical patterns in the Mediterranean Sea. The lack of correlation between species richness and longitude contradicts the notion that there is a decrease in species richness from west to east in the Mediterranean, following the direction of species colonization from the Atlantic.  相似文献   

20.
Over the last few decades, advances in molecular techniques have led to the detection of strong geographic population structure and cryptic speciation in many benthic marine taxa, even those with long‐lived pelagic larval stages. Polychaete annelids, in particular, generally show a high degree of population divergence, especially in mitochondrial genes. Rarely have molecular studies confirmed the presence of ‘cosmopolitan’ species. The amphinomid polychaete Hermodice carunculata was long considered the sole species within its genus, with a reported distribution throughout the Atlantic and adjacent basins. However, recent studies have indicated morphological differences, primarily in the number of branchial filaments, between the East and West Atlantic populations; these differences were invoked to re‐instate Hermodice nigrolineata, formerly considered a junior synonym of H. carunculata. We utilized sequence data from two mitochondrial (cytochrome c oxidase subunit I, 16S rDNA) markers and one nuclear (internal transcribed spacer) marker to examine the genetic diversity of Hermodice throughout its distribution range in the Atlantic Ocean, including the Mediterranean Sea, the Caribbean Sea, the Gulf of Mexico and the Gulf of Guinea. Our analyses revealed generally low genetic divergences among collecting localities and between the East and West Atlantic, although phylogenetic trees based on mitochondrial data indicate the presence of a private lineage in the Mediterranean Sea. A re‐evaluation of the number of branchial filaments confirmed differences between East and West Atlantic populations; however, the differences were not diagnostic and did not reflect the observed genetic population structure. Rather, we suspect that the number of branchial filaments is a function of oxygen saturation in the environment. Our results do not support the distinction between Hcarunculata in the West Atlantic and H. nigrolineata in the East Atlantic. Instead, they re‐affirm the older notion that H. carunculata is a cohesive species with a broad distribution across the Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号