首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dairy cows are commonly fed energy-dense diets with high proportions of concentrate feedstuffs to meet the increased energy needs of early lactation. However, feeding large amounts of concentrates may cause rumen acidosis and impact cow health. The hypothesis tested was that the energy supply and metabolic health of early-lactation Simmental cows can be maintained when high-quality hay rich in water-soluble carbohydrates (WSC) and crude protein (CP) is fed, despite the proportion of concentrates in the diet being reduced or even excluded. Twenty-four Simmental cows were allocated to one of four feeding groups beginning 10 d before the expected calving date, until 28 d thereafter. The feeding groups were 60CH (60% conventional fibre-rich hay plus 40% concentrate feed), 60HQH (60% high-quality hay plus 40% concentrate feed), 75HQH (75% high-quality hay plus 25% concentrate feed) and 100HQH (100% high-quality hay). The fibre-rich hay and high-quality hay differed in WSC content (110 g vs. 198 g of dry matter (DM)), neutral detergent fibre (646 g vs. 423 g of DM) and CP (65 g vs. 223 g of DM). Individual feed intake and milk production were monitored daily, and blood samples were collected weekly. Dry matter intake (DMI) and milk yield increased post partum, but 4 weeks post partum, the DMI of cows fed 100HQH only reached a daily mean DMI of 18.6 kg, whereas the DMI of the other groups averaged 21.9 kg (p < 0.046). The negative energy balance was less pronounced in cows fed 75HQH since they showed similar milk yields to the cows fed 60CH and 100HQH, but their energy intake was higher. Concentrations of milk components were similar across rations 60CH, 60HQH and 75HQH, as were most of blood parameters. Cows fed 100HQH responded to the energy deficit post partum with a higher ratio of non-esterified fatty acids to cholesterol and a higher concentration of ß-hydroxybutyrate (significant in comparison to cows fed 75HQH, p < 0.05). In conclusion, feeding high-quality hay with a WSC content of 20% in DM has the potential to decrease the proportion of concentrates in dairy cow feeding in early lactation, but cannot fully replace their supplementation due to a limited rumen capacity for forage intake.  相似文献   

2.
The effects of concentrate energy source on feed intake and rumen fermentation parameters of lactating dairy cattle, offered one of three grass silages differing in fermentation and intake characteristics, were evaluated in a partially balanced changeover design experiment involving four rumen fistulated dairy cows. Three silages were harvested using different management practices prior to and at ensiling. Silages A and C and silage B were harvested from primary or secondary regrowths either untreated or treated with a bacterial inoculant. For silages A, B and C, dry matter (DM) concentrations were 334, 197 and 183 g/kg (S.E. 3.1), pH values 4.00, 4.79 and 4.80 (S.E. 0.042) and ammonia nitrogen (N) concentrations were 123, 319 and 295 g/kg total N (S.E. 20.0), respectively. Two concentrates were formulated to contain similar crude protein, effective rumen degradable protein, digestible undegradable protein and metabolisable energy concentrations but using different carbohydrate sources to achieve a wide range of starch concentrations. For the low and high starch concentrates starch concentrations were 17 and 304 g/kg DM and acid detergent fibre concentrations were 170 and 80 g/kg DM, respectively. The silages were offered ad libitum, supplemented with 10 kg fresh concentrate daily. For silages A, B and C, DM intakes were 10.9, 7.2 and 8.6 kg/day and concentrate energy sources did not alter (P>0.05) intake. Increasing the level of starch in the concentrate decreased the molar concentration of acetate (P<0.05) and tended to increase the molar concentration of propionate (P<0.1). Silage type altered the molar concentration of acetate (P<0.01) and the acetate:propionate ratio (P<0.05). There were no silagetype×concentrate interactions (P>0.05) on silage intake or rumen fermentation parameters. It is concluded that when concentrate and silage form equal proportions of the diet, the composition of the silage has an over-riding influence on rumen fermentation parameters. Furthermore, the changes in milk fat concentration, observed in a concurrent production study, due to changes in silage and concentrate types can be accounted for by changes in the ratio of lipogenic to glucogenic precursors in the rumen fluid.  相似文献   

3.
The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE15 (basal diet with QTE at 15 g/kg DM) and QTE30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE30, whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE15 and QTE30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE15 and QTE30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE15. While there was no effect of Diet QTE15, treatment QTE30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.  相似文献   

4.
Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.  相似文献   

5.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

6.
Three primiparous dairy cows in early lactation with cannulas in rumen, duodenum and ileum were used in a 3×3 Latin square design to study effects of expander treatment of a barley-based concentrate. The concentrate was either pelleted at 75–80°C or expander treated at 125–130°C prior to pelleting. The diets consisted of 6.7 kg DM of grass silage and 10 kg DM of (1) 100% pelleted, (2) 50% pelleted and 50% expanded or (3) 100% expanded concentrate. The diets were offered as a mixed ration in four equal meals daily. Ruminal fermentation, bacterial N synthesis, duodenal, ileal and faecal flow of nutrients, and animal performance were monitored. Expander treatment numerically increased ruminal digestion of starch, which explained the observed increase in ruminal VFA concentration and the lowered ruminal pH (P<0.05). The proportion of butyrate in rumen liquid increased, whereas the proportion of propionate decreased in the expanded compared to the pelleted treatment (P<0.05). Expander treatment tended to increase rumen volume and rumen NDF pool size. Ruminal digestion of NDF was numerically lower in the expanded than in the pelleted treatment. No differences in bacterial N synthesis or efficiency of synthesis were observed among treatments. Expander treatment numerically increased the duodenal flow of non-ammonia N (NAN) and amino acid N (AAN), and seemed to increase the flow of non-ammonia non-bacterial N (NANBN) to the duodenum to a similar extent as was indicated by nylon bag studies. Milk production and milk fat and protein content were increased by the expander treatment (P<0.05), indicating that expander treatment increased the supply of nutrients for milk production.  相似文献   

7.
Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW), which has a higher proportion of by-pass starch than barley. Two studies were carried out: (1) a production study on 45 Danish Holstein cows and (2) an intensive study to determine digestibilities, rumen fermentation patterns and methane emission using three rumen-cannulated Danish Holstein cows. Both studies were organised as a 3×3 Latin square with three experimental periods and three different mixed rations. The rations consisted of grass-clover silage and maize silage (~60% of dry matter (DM)), rapeseed cake, soybean meal, sugar beet pulp and one of three different cereals as a major energy supplement: MCS, SHW or rolled barley (~25% of DM). When MCS replaced barley or SHW as an energy supplement in the mixed rations, it resulted in a lower dry matter intake; however, the apparent total tract digestibilities of DM, organic matter, NDF, starch and protein were not different between treatments. The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal VFA patterns and pH measures, it appeared that MCS possessed roughage qualities with respect to rumen environment, while at the same time being sufficiently energy rich to replace barley and SHW as a major energy supplement for milk production. The environmental impact, expressed as methane emissions, was not different when comparing MCS, SHW and barley.  相似文献   

8.
9.
Holstein cows were tested to determine which measures of thermal strain are the better predictors of production over 24–96 h at constant air temperatures of 19 and 29 °C. Both rectal temperature and respiration rate increased within 24 h, followed by milk yield and feed intake reductions after 48 h of heat stress. There were significant correlations between milk yield, feed intake, and rectal temperature. Several physiological strain indices were created to determine if combinations of measures are better than single measures in predicting production under these acute conditions. Mean daily rectal temperature was superior to maximum and minimum daily values of rectal temperature, as well as other indicators of thermal status in predicting dairy cow production. Likewise, mean daily rectal temperature was equal if not better than the physiological strain indices used in this study in predicting production. These data suggest that rectal temperature is superior to both single and combined indicators of thermal status in predicting dairy cow production, and should be considered for future development of physiological strain indices over a longer time period in both laboratory and field environments.  相似文献   

10.
Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (P<0.01) the intake and digestibility of ether extract and decreased the non-fiber carbohydrates; however, there were no influences on the intakes of DM, CP, NDF and total digestible nutrients (TDN). The digestibilities of DM, CP and NDF were not influenced by licuri cake addition. There was a decrease trend on TDN digestibility (P=0.08). Licuri cake replacing ground corn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (P<0.1) presented a linear increase with partial replacement of ground corn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk and Minas frescal cheese fat without negative effects on productive parameters.  相似文献   

11.
Pumpkin seed cake (PSC), a byproduct of pumpkin seed oil processing, is used in ruminant feed as a beneficial protein source. Experiments were conducted to evaluate PSC as a substitute for soybean meal in the diets of lactating cows based on performance, rumen fermentation, antioxidant function and nitrogen partitioning. Six multiparous lactating cows were used in a replicated 3 × 3 Latin square experiment with 27-day periods. The cows were randomly divided into three treatment groups: group (1) was fed a diet containing no PSC (0PSC), and groups (2) and (3) were fed diets in which soybean meal was replaced with PSC and dried distillers grains with solubles (DDGS) at levels of 50% (50PSC) and 100% (100PSC), respectively. The diets were isonitrogenous and contained identical roughage but different proportions of PSC and DDGS. Replacement of soybean meal with PSC and DDGS did not influence rumen degradation, milk performance, rumen fermentation, DM intake or apparent total tract digestibility, and nitrogen partitioning between milk, feces and urine did not differ in the animals fed the three diets. However, compared with a diet containing no PSC, the total antioxidant capacity (P < 0.05) and antioxidant enzymes (total superoxide dismutase, glutathione peroxidase and catalase) activities (P < 0.05) were increased in the animals that received the 50PSC and 100PSC diets. In contrast, addition of PSC significantly reduced concentrations of aspartate transaminase (P < 0.05), alkaline phosphatase (P < 0.05) and malondialdehyde (P < 0.05) in the plasma. These results demonstrate that PSC can be completely substituted for soybean meal in the diet of dairy cows without any negative impact on milk performance, rumen fermentation or apparent digestibility and that this dietary change improves antioxidant functions and blood parameters in dairy cows, indicating that PSC has the potential for use as a feed source for dairy cows.  相似文献   

12.
Extending the grazing season in pasture based systems of dairy production can increase farm profitability; poor weather and soil conditions can reduce the number of grazing days. The study objectives were to (i) examine the effect of restricted access to pasture in the autumn on the milk production, grazing behaviour and DM intake (DMI) of late lactation spring-calving dairy cows and (ii) establish the effect of alternating restricted and continuous access to pasture on dairy cow production, DMI and grazing behaviour. Cows were randomly assigned to one of four grazing treatments: (i) 22 h (full-time) access to pasture (22H; control); (ii) Two 5-h periods of access to pasture (2×5H); (iii) Two 3-h periods of access to pasture (2×3H); and (iv) alternating between full-time and 3-h access to pasture with no more than three continuous days on any one regime, e.g. Monday – full-time access, Tuesday − 2x3H access, Wednesday − 2x3H access; Thursday – full-time access, etc. (2×3HV). Restricted access to pasture was offered after a.m. and p.m. milking. Swards of similar quality and pregrazing herbage mass were offered. Treatment had no effect on milk yield (13.2 kg/day), milk fat (48.2 g/kg), protein (39.0 g/kg) or lactose content (42.6 g/kg) and milk solid yield (1.15 kg/day). Similarly, there was no effect of treatment on final BW (483 kg) or final BCS (2.66). There was no significant difference in DMI (15.1 kg DM/cow/day) between treatments. There was an effect on daily grazing time, 22H cows (565 min/cow/day) grazed for longest time, however, when the 2x3HV treatment had full-time access to pasture, they had a similar grazing time (543 min/cow/day) to the 22H cows and were similar to the 2x3H treatment on days with restricted access to pasture (357 min/cow/day). The 22H and 2x5H animals had similar grass DMI/min (29.2 g/min), the 2x3HV were higher (33.9 g/min) but were similar to the comparable treatment when offered 2x3H access time (41.6 g/min) and when offered 22H access time (27.7 g/min). The results from this study show how when offered a grass only diet of autumn pasture grazing behaviour can be modified by restricting pasture access time without reducing dairy cow production in late lactation at low production levels. There was also no effect of alternating access time between 22H and 2x3H on milk production and DMI in the 2x3HV treatment. Restricted access time to pasture in autumn may be a strategy which farmers can use to extend the grazing season.  相似文献   

13.
The objective of this study was to investigate the effects of extruded full-fat soybean (ESB) as a replacement for soybean meal (SBM) on nutrient intake, rumen fermentation, and growth performance of dairy calves. A total of 45 male Holstein dairy calves (42.0±0.5 kg of BW) were randomly assigned to one of three experimental diets: (1) 0% ESB (Control): 35.3% SBM no ESB; (2) 25% ESB: 27.0% SBM+9.0% ESB; and (3) 50% ESB: 19.0% SBM+19.0% ESB. All calves were weaned on day 56 of age and remained in the study until day 70 of age. During the pre-weaning and overall periods, substituting of SBM with ESB had no effect on intake of starter feed, metabolizable energy (ME), CP and non-fiber carbohydrate (NFC). Compared with the control, 50% ESB resulted in a decrease in starter feed intake, and intakes of other nutrients including CP, NFC and ME during the post-weaning period. Substituting SBM with ESB decreased intake of C16 : 0 and increased intakes of n-9 C18 : 1, n-6 C18 : 2 and n-3 C18 : 3 during the pre-weaning, post-weaning and overall periods. Using ESB as a replacement for SBM did not affect average daily gain, feed efficiency, rectal temperature and fecal score over the trial periods. Compared with control, the rumen concentration of NH3-N decreased for 50% ESB on days 35 and 56 of age but not when compared with 25% ESB. Rumen pH, total volatile fatty acids concentrations, and the molar proportions of ruminal acetate, propionate and butyrate were not different among treatments. Body measurements were not affected by the treatments. In conclusion, substitution of SBM with ESB may improve nitrogen utilization efficiency in dairy calves but slightly reduce post-weaning starter intake with no negative outcomes on growth performance and rumen fermentation.  相似文献   

14.
The purpose of this experiment was to investigate how early lactating cows adjust their metabolism and production to acute, but moderate changes in the energy density of the diet. Sixty dairy cows were randomly assigned to one of four treatments: two change-over groups (HNH and NHN) and two control groups (HHH and NNN), where H and N refer to a high and normal energy density in the total mixed ration (TMR), respectively. The experimental period covered the first 9 weeks post calving, which was split up in three 3-week periods. Thus, cows assigned to HNH or NHN shifted TMR in weeks 4 and 7 after calving while cows assigned to HHH or NNN were fed the same TMR for all 9 weeks. Results from cows on treatment HNH were compared with group HHH while cows on treatment NHN were compared with group NNN. When the diet changed from N to H and H to N, cows increased and decreased their dry-matter intake (DMI), respectively compared with control groups. Cows adjusted milk yield accordingly to changes in DMI, although not always significantly. Energy-corrected milk yield was not significantly affected by any of the changes in the energy density of the diet but generally showed same tendencies as milk yield. Non-esterified fatty acids (NEFA), beta-hydroxybutyrate in blood and milk and triacylglycerol and glycogen content in the liver were not significantly affected by changes in the energy density of the diet, except from NEFA at one change. Glucose increased more when the diet changed from N to H and increased less when the diet changed from H to N, compared with control groups, although not always significantly. Collectively, these results suggest that cows adjust their DMI and partly milk yield according to the energy density of the diet and therefore only limited effects were observed in physiological parameters.  相似文献   

15.
In cattle, elimination of bacterial contamination from the uterine lumen after parturition is often delayed or compromised, and pathogenic bacteria can persist, causing uterine disease and infertility. The aim of this study was to compare the clinical and bacteriologic recovery following a single intrauterine administration of formosulphatiazole, cephapirin or placebo in cows with clinical endometritis. Cows (n = 80), no less than 28 days postpartum, with clinical endometritis were enrolled in the study. Endometritis was diagnosed by a complete reproductive examination, including rectal palpation, ultrasonography, vaginoscopy and uterine swab. All cows were randomly assigned to receive one of three intrauterine treatments (T0): 2500 mg of formosulphatiazole (Group A); 500 mg of cephapirin (Group B); placebo (4250 mg of propylene glycol; Group C). Cows were examined at the first estrus after treatment or no more than 30 days after (T1). Bacteria isolated were E. coli, A. pyogenes, Pasteurella spp. and Streptococcus spp. After treatment, in Group A and B only 6/30 (20.0%) and 6/24 (25.0%) cows showed a positive bacteriologic culture (P > 0.05), while in Group C the number of positive animals was significantly higher (19/26; 73.1%; P < 0.05). At T0, total clinical scores were similar between the three groups (Group A: 5.84 ± 1.07; Group B: 5.91 ± 1.0; Group C: 5.62 ± 1.17; P > 0.05) and indicative of clinical endometritis. At T1, endometritis scores were significantly lower than those reported before uterine infusion (P < 0.05); however, Group A and B score, 0.4 ± 0.9 and 1.0 ± 2.1, respectively, correspond to no and slight endometritis, while animals in Group C reported a total endometritis score significantly higher (4.6 ± 3.5; P < 0.05) corresponding to endometritis. In the present study, a commercial formosulphatiazole preparation was as effective as cephapirin and more effective than placebo for the treatment of clinical endometritis.  相似文献   

16.
The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p < 0.05) the concentration of C16:0, C18:0, C18:2cis-9,12, C18:3cis-9,12,15 and total saturated and polyunsaturated FA in the plasma of lactating cows. In non-lactating cows, the SO addition increased the plasma concentration of C18:1trans-11. In lactating cows, concentrations of C16:0, C18:0 and total saturated FA were increased (p < 0.05) by HPO addition in the high-density lipoprotein (HDL). Total saturated FA were increased (p < 0.05) by HPO in very-low-density lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p < 0.05) by HPO in HDL, whereas C18:1trans-11 was increased (p < 0.05) by SO in the low-density lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO.  相似文献   

17.
The study evaluated the long-term influence of feeding ground barley treated with lactic acid (LA) alone or with LA and heat on performance, energy and protein balance in dairy cows. Thirty cows were fed three diets differing in the treatment of barley grain, either unprocessed ground barley (Control), ground barley steeped in 1% LA at room temperature (LA-treated barley) or ground barley steeped in 1% LA with an additional heating at 55°C (LAH-treated barley). Cows were studied from week 3 to 17 post-partum. Dry matter intake (DMI), milk yield and composition and body weight (BW) were measured daily. Estimated energy and protein balances were calculated and blood samples were collected three times during the experiment and analysed for common metabolites of energy and lipid metabolism. Digestibility of different treated barley and other dietary ingredients was investigated in vivo using four wethers. The treatment of barley with LA and LAH increased the digestibility of organic matter (OM) by approximately 5% and the content of metabolisable energy by 0.5–0.6 MJ/kg DM. Data showed no effect of feeding diets containing LA- or LAH-treated barley at 39% of DM on overall DMI, BW, BW change, milk production and composition and on the blood variables studied. Diet influenced the estimated balances of net energy of lactation (p < 0.01) and the content of utilisable protein at the duodenum (p = 0.07) with cows fed the diet with LA-treated barley showing improved balances. In conclusion, feeding diets containing LA- or LAH-treated barley had no influence on performance, milk composition and blood metabolites, but LA treatment without heat seems to improve the energy balance of cows.  相似文献   

18.
The objectives of the study were to determine the effect of the partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea on the performance, metabolism and whole-tract digestibility in mid-lactation dairy cows. Forty-two Holstein–Friesian dairy cows were allocated to one of three dietary treatments in each of three periods of 5 weeks duration in a Latin square design. Control (C) cows were offered a total mixed ration based on grass and maize silages and straight feeds that included 93 g/kg dry matter (DM) soyabean meal and 61 g/kg DM rapeseed meal. Cows that received either of the other two treatments were offered the same basal ration with the replacement of 28 g/kg DM soyabean and 19 g/kg DM rapeseed meal with either 5 g/kg DM feed grade urea (U) or 5.5 g/kg DM of the slow-release urea (S; OptigenR; Alltech Inc., Kentucky, USA), with the content of maize silage increasing. There was no effect (P > 0.05) of dietary treatment on DM intake, which averaged 22.5 kg/day. Similarly, there was no effect (P > 0.05) of treatment on daily milk or milk fat yield but there was a trend (P = 0.09) for cows offered either of the diets containing urea to have a higher milk fat content (average of 40.1 g/kg for U and S v. 38.9 g/kg for C). Milk true protein concentration and yield were not affected by treatment (P > 0.05). Milk yield from forage and N efficiency (g milk N output/g N intake) were highest (P < 0.01) in cows when offered S and lowest in C, with cows receiving U having intermediate values. Cows offered S also tended to have the highest live weight gain (0.38 kg/day) followed by U (0.23 kg/day) and C (0.01 kg/day; P = 0.07). Plasma urea concentrations were higher (P < 0.05) at 2 and 4 h post feeding in cows when offered U and lowest in C, with animals receiving S having intermediate values. There was no effect (P > 0.05) of treatment on whole-tract digestibility. In conclusion, the partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea can be achieved without affecting milk performance or diet digestibility, with the efficiency of conversion of dietary N into milk being improved when the slow-release urea was fed.  相似文献   

19.
The aim of this study was to examine the influence of glyphosate (GL) residues in feedstuffs on performance, energy balance and health-related characteristics of lactating dairy cows fed diets with different concentrate feed proportions. After an adaption period, 64 German Holstein cows (207 ± 49 d in milk; mean ± SD) were assigned to either groups receiving a GL contaminated total mixed ration (TMR) (GL groups) or an uncontaminated TMR (CON groups) during a 16 weeks trial. Contaminated feedstuffs used were legally GL-treated peas and wheat (straw and grain). GL and CON groups were subdivided into a “low concentrate” group (LC) fed on dry matter (DM) basis of 21% maize silage, 42% grass silage, 7% straw and 30% concentrate and a “high concentrate” group (HC) composed of 11% maize silage, 22% grass silage, 7% straw and 60% concentrate for ad libitum consumption. Body condition score, body weight, DM intake and milk performance parameters were recorded. In blood serum, β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA) and glucose were measured and energy balance was calculated. Milk was analysed for GL residues. At week 0, 7 and 15, general health status was evaluated by a modified clinical score. The average individual GL intake amounted for Groups CONLC, CONHC, GLLC and GLHC to 0.8, 0.8, 73.8 and 84.5 mg/d, respectively. No GL residues were detected in milk. GL contamination did not affect body condition score, body weight, DM intake, nutrient digestibility, net energy intake, net energy balance or BHB, glucose, NEFA and milk performance parameters; whereas concentrate feed proportion and time did affect most parameters. The clinical examination showed no adverse effect of GL-contaminated feedstuffs on cows’ health condition. In the present study, GL-contaminated feedstuffs showed no influence on performance and energy balance of lactating dairy cows, irrespective of feed concentrate proportion.  相似文献   

20.
At weaning (33 days of age), 246 hybrid rabbits (782 ± 53 g live weight) were divided into six experimental groups and fed ad libitum six iso-ADF diets formulated according to a bifactorial arrangement with two protein levels (152 and 162 g/kg) and three soluble fibre-to-starch ratios (0.2, 0.6 and 1.5), the latter obtained by replacing starch (from 209 to 91 g/kg) with soluble fibre (from 48 to 136 g/kg). The trial lasted for 42 days until slaughter. The rabbits that were fed the diet with the highest protein level and the lowest soluble fibre-to-starch ratio showed the highest mortality rate (17.1% v. 1.7% on average; P < 0.001) and sanitary risk (mortality + morbidity: 20.0% v. 8.1%; P = 0.04) compared with the rabbits fed the other diets. With increasing dietary crude protein level, the digestibility of dry matter (DM; 0.615 to 0.626) and gross energy (0.620 to 0.630) as well as aNDF (without sodium sulphite; 0.298 to 0.323) and hemicelluloses (0.417 to 0.461) significantly (0.001 < P < 0.10) improved. Moreover, total volatile fatty acids (VFAs) in the caecal content increased (59.0 to 68.4 mmol/l; P = 0.01) and ileum crypt depth tended to reduce (P = 0.07). Neither growth performance nor slaughter results were affected by the protein level. When increasing soluble fibre-to-starch ratio, the digestibility of DM and gross energy did not change, whereas the digestibility of aNDF (0.264 to 0.352), ADF (0.167 to 0.267) and hemicelluloses (0.400 to 0.470) linearly increased (P < 0.001). At caecum, N-ammonia tended to decrease linearly (P = 0.08), total VFA concentration (56.0 to 67.3 mmol/l) and acetate proportion (80.4 to 83.3 mmol/100 mmol VFA) linearly increased (P < 0.01), whereas butyrate and valerate proportions decreased (0.01 < P < 0.05). Growth performance was similar among groups, whereas at slaughter the proportion of the gastrointestinal tract linearly increased (177 to 184 g/kg; P < 0.01) without effect on dressing percentage, however. As soluble fibre-to-starch ratio increased, meat pH linearly decreased and lightness (L*), redness (a*) and yellowness (b*) colour indexes increased (0.01 < P < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号