首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marian, J.E.A.R. and Domaneschi, O. 2012. Unraveling the structure of squids’ spermatophores: a combined approach based on Doryteuthis plei (Blainville, 1823) (Cephalopoda: Loliginidae). —Acta Zoologica (Stockholm) 93 : 281–307. Male coleoid cephalopods produce elaborate spermatophores, which function autonomously outside the male body during copulation, undergoing a complicated process of evagination. In order to contribute to the understanding of this unique structure, this study investigated the morphology of the spermatophore of Doryteuthis plei applying several microscopy techniques. A hitherto unreported, much more complex structural arrangement was revealed for the loliginid spermatophore, the most striking findings being: (1) the complex, layered structure of the middle membrane, which bears an additional, chemically distinct segment surrounding part of the cement body; (2) the presence of a space between the inner tunic and middle membrane filled with a fine reticulated material; (3) the presence of stellate particles not only embedded in the spiral filament, but also closely applied to the inner membrane at the level of the cement body; (4) the presence of a pre‐oral chamber in the cap region; and (5) the complex organization of the cement body, formed by two distinct layers encompassing contents of different chemical and textural properties. Careful literature reassessment suggests several of these features are common to loliginids, and to some extent to other squids. Their possible functional implications are discussed in light of our knowledge of the spermatophoric reaction mechanics.  相似文献   

2.
To examine the importance of the upper estuarine areas of Ariake Bay as a nursery ground for fish, assemblages of larvae and juveniles were compared among various aquatic habitats. The upper estuaries of the bay (the Rokkaku and Hayatsue estuaries) are brackish, highly turbid waters with high tidal velocities, and differ substantially from the Isahaya area, which has been separated from the bay by a man-made dike, to the middle estuary (the Kikuchi estuary). Abundances of larvae and juveniles were higher in the estuaries than in the open bay and Isahaya areas. Abundant species in the upper estuaries were similar to each other, but differed from those of the middle estuary. This was primarily due to larvae and juveniles of fishes that occurred almost entirely in the upper estuaries, such as Acanthogobius hasta, Boleophthalmus pectinirostris, Coilia nasus, Cynoglossus abbreviatus, Nibea albiflora, Odontamblyopus lacepedii, Trachidermus fasciatus and Tridentiger barbatus. These results suggest that the upper estuaries play an important role as nursery grounds for fishes.  相似文献   

3.
Synopsis At least eight species of sharks of the families Carcharhinidae and Sphyrnidae use Cleveland Bay in northern Australia as a communal nursery area.Carcharhinus dussumieri, C. fitzroyensis, C. limbatus andC. tilstoni use the bay as a seasonal primary nursery, with juveniles occurring in it for only a few months each year immediately after birth. Alternatively,Carcharhinus sorrah, Rhizoprionodon acutus andR. taylori use the bay as a year-round primary and secondary nursery, with juveniles remaining in it up to the size at maturity. AdultR. taylori also persist in the bay, a behavioural pattern possibly explained by their small maximum size. While present immediately after birth the type of utilisation pattern displayed bySphyrna lewini could not be clarified in this study. Although diets of these species in the bay are similar, there is probably little direct competition for food due to the highly productive habitats in the bay supporting an abundance of food resources. The highest numbers of juveniles occur when prey species are the most abundant, and when temporal separation of some seasonally-occurring species of sharks in effect.  相似文献   

4.
Factors affecting the distribution of juvenile estuarine and inshore fish   总被引:20,自引:0,他引:20  
The differential distributions of juveniles and adults of 25 species of teleost were investigated and compared from four habitat types in sub-tropical Moreton Bay, Queensland. The aim of the study was to identify factors influencing the distribution of juveniles, particularly the species which enter estuaries. The following habitats were sampled: a shallow, sheltered tidal estuary (Caboolture); a shallow, exposed bay with muddy substrates (Deception Bay); an exposed area of sandy substrates and seagrass (Toorbol Point) and a sheltered oceanic site with sandy substrates and seagrass (Kooringal). Data on diet, spawning seasons and recruitment periods of fry are presented together with measurements of salinity, temperature and turbidity. Species entering estuaries recruited mainly in summer (rainy season). The possible preference of juveniles for calm water, the roles of food and predation pressure, the effects of salinity, temperature and turbidity are discussed in relation to the biology and distribution of the fish. Salinity and temperature were probably not important to most juvenile fish. The effects of calm water, suitable food and predators vary according to species. Although all juveniles studied preferred shallow water, in the case of those entering estuaries, turbidity was the single most important factor. Juveniles of the same species occurred in both the estuary and Deception Bay where abiotic and biotic factors other than turbidity were different. During summer, turbidity gradients extended from east to west in Moreton Bay with highest turbidities in Caboolture estuary and Deception Bay. In winter, turbidities throughout Moreton Bay were low and relatively uniform. At this time many of the ‘clear water’ species occurred in Deception Bay. The influence of high turbidity on fish may be linked to reduced predation pressure and perhaps food supply in shallow water. Turbidity gradients in summer may aid fry in locating estuarine nursery grounds. It is apparent however, that juveniles of many species are probably not attracted to estuaries per se but to shallow turbid areas.  相似文献   

5.
Loliginid and sepiolid squid light organs are known to host a variety of bacterial species from the family Vibrionaceae, yet little is known about the species diversity and characteristics among different host squids. Here we present a broad-ranging molecular and physiological analysis of the bacteria colonizing light organs in loliginid and sepiolid squids from various field locations of the Indo-West Pacific (Australia and Thailand). Our PCR-RFLP analysis, physiological characterization, carbon utilization profiling, and electron microscopy data indicate that loliginid squid in the Indo-West Pacific carry a consortium of bacterial species from the families Vibrionaceae and Photobacteriaceae. This research also confirms our previous report of the presence of Vibrio harveyi as a member of the bacterial population colonizing light organs in loliginid squid. pyrH sequence data were used to confirm isolate identity, and indicates that Vibrio and Photobacterium comprise most of the light organ colonizers of squids from Australia, confirming previous reports for Australian loliginid and sepiolid squids. In addition, combined phylogenetic analysis of PCR-RFLP and 16S rDNA data from Australian and Thai isolates associated both Photobacterium and Vibrio clades with both loliginid and sepiolid strains, providing support that geographical origin does not correlate with their relatedness. These results indicate that both loliginid and sepiolid squids demonstrate symbiont specificity (Vibrionaceae), but their distribution is more likely due to environmental factors that are present during the infection process. This study adds significantly to the growing evidence for complex and dynamic associations in nature and highlights the importance of exploring symbiotic relationships in which non-virulent strains of pathogenic Vibrio species could establish associations with marine invertebrates.  相似文献   

6.
Shrimp are an important component of the San Francisco Bay biota, both as predators on benthic fauna, and as a food source for predatory fish. Of three common species in the bay, Crangon franciscorum is the most abundant. The bay is predominantly a nursery area for maturing shrimp of this species. During the main reproductive period in the early spring, ovigerous females and planktonic larvae are in most years centered outside the bay in the nearshore ocean, although both are also present in the bay. Juveniles move into both the southern reach and the northern reach shortly after settling, and landward-flowing bottom currents are possibly instrumental in this migration. The seasonal cycle of shrimp abundance in the bay, dominated by this spring immigration of newly settled juveniles, is characterized by a progressive migration of the growing shrimp up the estuary coincident with upstream penetration of higher salinity water during summer. Differences in abundance and distribution between the years 1980, 1981, and 1982 suggest that the level of river discharge and accompanying salinity regime are important controlling factors in the distribution, recruitment levels, and subsequent survival and growth of C. franciscorum in the San Francisco Bay.  相似文献   

7.
Diagnostic photopigment analysis is a useful tool for determining the presence and relative abundance of algal groups in natural phytoplankton assemblages. This approach is especially useful when a genus has a unique photopigment composition. The toxic dinoflagellate Karenia brevis (Davis) G. Hansen & Moestrup comb. nov. shares the diagnostic pigment gyroxanthin‐diester with only a few other dinoflagellates and lacks peridinin, one of the major diagnostic pigments of most dinoflagellate species. In this study, measurements of gyroxanthin‐diester and other diagnostic pigments of K. brevis were incorporated into the initial pigment ratio matrix of the chemical taxonomy program (CHEMTAX) to resolve the relative contribution of K. brevis biomass in mixed estuarine phytoplankton assemblages from Florida and Galveston Bay, Texas. The phytoplankton community composition of the bloom in Galveston Bay was calculated based on cell enumerations and biovolumetric measurements in addition to chl a‐specific photopigment estimates of biomass (HPLC and CHEMTAX). The CHEMTAX and biovolume estimates of the phytoplankton community structure were not significantly different and suggest that the HPLC–CHEMTAX approach provides reasonable estimates of K. brevis biomass in natural assemblages. The gyroxanthin‐diester content per cell of K. brevis from Galveston Bay was significantly higher than in K. brevis collected from the west coast of Florida. This pigment‐based approach provides a useful tool for resolving spatiotemporal distributions of phytoplankton in the presence of K. brevis blooms, when an appropriate initial ratio matrix is applied.  相似文献   

8.
The arms and tentacles of squid (Family Loliginidae: Sepioteuthis sepioidea (Blainville), Loligo pealei (LeSueur), Loligo plei (Blainville), Loliguncula brevis (Blainville)) do not possess the hardened skeletal elements or fluid-filled cavities that typically provide skeletal support in other animals. Instead, these appendages are made up almost entirely of muscle. It is suggested here that the musculature serves as both the effector of movement and as the skeletal support system itself. High-speed movie recordings were used to observe prey capture by loliginid squid. Extension of the tentacles (1 pair) during prey capture is probably brought about by contraction of transverse muscle fibers and circular muscle fibers. Contraction of longitudinal muscle fibers causes retraction of the tentacles. Torsion of the tentacles during extension may be the result of contraction of muscle fibers arranged in a helical array. The inextensible but manipulative arms (4 pairs) may utilize a transverse muscle mass to resist the longitudinal compression caused by contraction of the longitudinal muscles which bend the arms. A composite connective tissue/muscle helical fiber array may twist the arms.  相似文献   

9.
This study is the first to apply a comparative analysis of environmental chemistry, microbiological parameters and bacterioplankton 16S rRNA clone libraries from different areas of a 50 km transect along a trophic gradient in the tropical Guanabara Bay ecosystem. Higher bacterial diversity was found in the coastal area, whereas lower richness was observed in the more polluted inner bay water. The significance of differences between clone libraries was examined with libshuff statistics. Paired reciprocal comparisons indicated that each of the libraries differs significantly from the others, and this is in agreement with direct interpretation of the phylogenetic tree. Furthermore, correspondence analyses showed that some taxa are related to specific abiotic, trophic and microbiological parameters in Guanabara Bay estuarine system.  相似文献   

10.
The function of the Mondego estuary as a fish nursery habitat was investigated from June 2003 to June 2004 by comparing the timing of estuarine colonization with juveniles of sea bass Dicentrarchus labrax, flounder Platichthys flesus, and sole Solea solea, while also analysing their population structure, growth and diet composition. Differences in the onset of estuarine colonization were observed, since sole juveniles were the first to enter the estuary (in January), followed by flounder in April and sea bass in June. The estuarine population of these species consisted of several age‐groups, although the majority of individuals belonged to age‐groups 0 and 1. The growth rates determined for 0‐group fish were within the range of those reported for other European estuarine systems. Some differences were also recognized regarding the timing of estuarine colonization and the length of the growing season. Diet of 0‐group sea bass consisted mainly of Crustacea, Polychaeta and Mollusca. Flounder juveniles fed chiefly on Amphipoda (especially Corophium spp.), with Polychaeta, Isopoda and Decapoda also being common prey. The diet of 0‐group sole was dominated by Polychaeta, with Amphipoda, Mollusca and Decapoda ranking highest, with other important benthic organisms also being present. Dietary overlap among these species was relatively low.  相似文献   

11.
Salt marshes and shallow-water macroalgal beds are known to provide nursery habitat for many species of fish and invertebrates. The role of these habitats as refuge from predation is well established, but the degree to which indigenous primary production within the nursery provides food for growth and development of estuarine species remains unresolved. In this study, we tested the hypothesis that juvenile blue crabs depend on indigenous primary production, directly or indirectly, during their entire stay within the nursery. To test this hypothesis, we conducted isotopic studies and stomach content analyses of juveniles from habitats near the mouth of Delaware Bay and from an adjacent lagoonal estuary (ca. 39.5° N, 75.1° W). Primary producers, marsh detritus, various life-history stages of blue crabs and potential prey species were sampled in the main estuary and in an adjacent marsh during the summer and early fall of two consecutive years. Newly settled juveniles (<15 mm carapace width) from the marsh were about 1.8‰ lighter in carbon (−17.2‰) relative to larger juveniles from the marsh (15–30 mm carapace width) and appeared to have retained a carbon isotopic signature indicative of the phytoplankton-based food web associated with larval stages. However, the signature of juveniles changed as a function of size. Large juveniles and crabs >60 mm were enriched in δ13C (−14.7 ± 0.1‰) compared to small crabs, suggesting a gradual shift in diet from a planktonic to a detritus-based food web with increasing size. As with crabs from Delaware Bay, the δ13C signature of juvenile crabs sampled from macroalgal beds in the lagoonal estuary (Rehoboth Bay) changed as a function of size. Also, δ13C ratios of crabs varied among the various species of macroalgae. The δ15N composition of primary producers in the marsh and main estuary also was reflected in the δ15N values of crabs and other benthic consumers in the respective habitats. Results of stomach-content analysis in this study were consistent with isotope data. Observed changes in prey preferences were related to changes in size of juvenile crabs and also differed among habitats. Gut content analyses of the three size classes of juveniles in macroalgal beds from Rehoboth Bay indicated that the crabs depend heavily on various amphipod species that occur on the seaweeds. These amphipods graze directly on the macroalgae and are among the most abundant invertebrates in the macroalgal beds. This implies a direct trophic relationship between the juvenile crabs and the macroalgae. In summary, our study provides strong evidence that the value of nursery areas such as salt marshes and macroalgal beds goes beyond that of providing refuge from predation, and that species using these nurseries (e.g. juvenile blue crabs) are ultimately dependent on primary production originating in benthic plants indigenous to the nursery.  相似文献   

12.
Luminescent bacteria in the family Vibrionaceae (Bacteria: γ-Proteobacteria) are commonly found in complex, bilobed light organs of sepiolid and loliginid squids. Although morphology of these organs in both families of squid is similar, the species of bacteria that inhabit each host has yet to be verified. We utilized sequences of 16S ribosomal RNA, luciferase α-subunit (luxA) and the glyceraldehyde-3-phosphate dehydrogenase (gapA) genes to determine phylogenetic relationships between 63 strains of Vibrio bacteria, which included representatives from different environments as well as unidentified luminescent isolates from loliginid and sepiolid squid from Thailand. A combined phylogenetic analysis was used including biochemical data such as carbon use, growth and luminescence. Results demonstrated that certain symbiotic Thai isolates found in the same geographic area were included in a clade containing bacterial species phenotypically suitable to colonize light organs. Moreover, multiple strains isolated from a single squid host were identified as more than one bacteria species in our phylogeny. This research presents evidence of species of luminescent bacteria that have not been previously described as symbiotic strains colonizing light organs of Indo-West Pacific loliginid and sepiolid squids, and supports the hypothesis of a non-species-specific association between certain sepiolid and loliginid squids and marine luminescent bacteria.  相似文献   

13.
Oxygen consumption and ammonia excretion rates were investigated in young Octopus maya (hatching to 139 days old; 0.11–81.23 g wet body weight, BW; 22.5–23.9°C), young squids of Loligo forbesi (hatching to 45 days old; 9.4–115.3 mg BW; 12.3–13.1°C) and young squids of Lolliguncula brevis (2.00–39.98 g BW; 23.8–24.7°C). Except at hatching, oxygen consumption and ammonia excretion rates on an individual basis (M) of these three cephalopods increased linearly with increasing body weight (BW) expressed as M = aBWb . Values of b for oxygen consumption were 0.900, 0.910 and 0.848 and for ammonia excretion were 0.744, 0.809 and 0.751 for O. maya, L. forbesi and L. brevis, respectively. Among the three species the value a varied widely, while b was similar for both oxygen consumption and ammonia excretion rates. Based upon these data, metabolism for hatchlings of O. maya and L. forbesi was estimated to be relatively lower than that of older juveniles. The O/N ratios for hatchlings of O. maya and L. forbesi were relatively high and indicate an apparent dependence upon lipids in the immediate post‐hatching period, followed by standard protein energy utilization thereafter.  相似文献   

14.
The juveniles of Senegal sole, Solea senegalensis, Kaup 1858, and common sole, Solea solea (Linnaeus 1758) concentrate in estuarine and coastal nurseries of widely differing temperatures and salinities. Yet, little is known about the effect of these physiologically important variables on the gastric evacuation rates of these species. Gastric evacuation experiments were performed on juveniles of S. senegalensis and S. solea. Three temperatures were tested, 26, 20 and 14°C at a salinity of 35‰. A low salinity experiment was also carried out at 15‰, at 26°C. Experimental conditions intended to reflect conditions in estuarine and coastal nurseries where juveniles of these species spend their first years of life. The relation between stomach contents and time was best described by exponential regression models for both species. An analysis of covariance (ancova ) was performed in order to test differences in evacuation rate due to temperature and salinity (slope of evacuation time against stomach contents) for each species. While increasing temperature increased evacuation rates in both species (although not at 26°C in S. solea), the effect of low salinity differed among species, leading to a decrease in gastric evacuation rate in that of S. senegalensis and an increase in S. solea. Differences in gastric evacuation rate between species were related to its metabolic optimums and to its distribution in the nursery area where fish were captured. Implications for the habitat use of estuarine and coastal nurseries are discussed.  相似文献   

15.
16.
The nursery role of the Mondego estuary for marine fish species was studied between June 2003 and May 2004. The spatial and temporal distribution and abundance patterns of 0-group Dicentrarchus labrax (Linnaeus, 1758), Platichthys flesus (Linnaeus, 1758) and Solea solea (Linnaeus, 1758) were analyzed based on monthly sampling surveys in five stations along the estuarine gradient. Fishing took place during the night at low water of spring tides, using a 2 m beam trawl. The spatial patterns of estuarine colonization were different according to species. D. labrax showed a wider distribution, but the main nursery ground was the same as for S. solea. Highest densities of S. solea juveniles were found in oligohaline areas, with muddy bottoms and high benthic invertebrates availability, while P. flesus occurred mainly in the sandy uppermost areas. D. labrax was found in both these areas. Fish abundance in the estuary mainly reflected seasonal changes.  相似文献   

17.
Shallow estuarine habitats, including vegetated marsh edge (VME), oyster reefs (oyster), and nonvegetated soft bottom (NVB), provide important functions for estuarine resident and estuarine-dependent species. A paucity of information exists concerning relative nursery value of these habitats for juvenile fishes and invertebrates. In Grand Bay, MS and Weeks Bay, AL, National Estuarine Research Reserves (NERR), this study evaluated the potential of the three habitats to serve as nurseries by quantifying habitat-specific density, size, growth, and survival of juvenile white shrimp Litopenaeus setiferus. Drop sampling in Oct 2003 and Jul 2004 indicated that white shrimp density was significantly greater in oyster and VME when compared with adjacent NVB. No significant difference occurred in density between oyster and VME. Significantly larger shrimp were collected in NVB, intermediate-sized shrimp were collected in oyster, and smaller shrimp were collected in VME. Using field enclosures to study growth of juvenile white shrimp we found significantly higher growth in oyster when compared with NVB and VME. Predator mesocosm experiments indicated that when blue crabs were used as predators, white shrimp juveniles experienced significantly higher survival rates in VME and NVB when compared with oyster. Our study suggests that juvenile white shrimp may select for oyster over NVB because of higher food availability and not necessarily for refuge needs from predation by blue crabs. In addition, juvenile habitat needs may shift with individual growth, indicating that the relative nursery value of a habitat is not inclusive for all juvenile sizes. Similar to VME, oyster provides an important function in the juvenile stages of white shrimp and should be examined further as a potential nursery habitat.  相似文献   

18.
Estimated age, hatching date and sexual maturation were investigated for the loliginid squids Loligo duvauceli and L. chinensis, the commercially important neritic species in the Andaman Sea of Thailand. The specimens caught by commercial bottom-trawl in Phang-nga Bay and southern area off Phuket Island were obtained monthly from Phuket fish landing between April and August 2005. Age was estimated based on the counting of statolith increments from a total of 329 individuals of L. duvauceli (ML ranges from 41 to 224 mm) and 116 individuals of L. chinensis (ML ranges from 42 to 186 mm). The estimated age ranged from 41 to 161 and 67 to 158 days old for L. duvauceli and L. chinensis, respectively. The length–weight relationships differed among sexes and the sexual dimorphism was expressed as mature females having a greater body weight than males of the same length. Males showed a wide range of maturity size possibly because of the seasonal change in size at maturity. The results of the back calculation for the hatching date of individuals fell between November 2004 and June 2005 which suggests that L. duvauceli and L. chinensis hatch continuously and recruit to the fishing ground for a relatively short period with a shorter lifespan than expected.  相似文献   

19.
The role of the digestive gland, with respect to non-structural lipid, was examined using proximal analysis, histochemistry and quantitative histological techniques in the tropical loliginid squids Sepioteuthis lessoniana (Lesson) and Photololigo sp. The digestive gland of both species was characterized by large and numerous lipid droplets in the apical portion of the digestive cells and very few in the basal portion. The apical lipid droplets were released into the lumen of the gland and subsequently rapidly removed. Despite the numerous large apical lipid droplets, the lipid concentration in the digestive glands of S. lessoniana and Photololigo sp. was lower than that reported for most squid species. There was no relationship between lipid concentration and stage of digestion, suggesting that lipid is not stored in the gland after a meal. There was also no relationship between lipid concentration and the sex of an individual or stage of reproductive maturity, suggesting that these squids are not storing lipid in the digestive gland for use in fuelling reproductive maturation or providing an energy source for oocytes. I believe this study is the first to combine proximal analysis and quantitative histological techniques to examine the role of the squid digestive gland with respect to non-structural lipids. The results indicate that the digestive gland of these tropical loliginid squids is excreting, not storing, excess dietary lipid.  相似文献   

20.
Using shipboard data collected from the central west Florida shelf (WFS) between 2000 and 2001, an optical classification algorithm was developed to differentiate toxic Karenia brevis blooms (>104 cells l−1) from other waters (including non-blooms and blooms of other phytoplankton species). The identification of K. brevis blooms is based on two criteria: (1) chlorophyll a concentration ≥1.5 mg m−3 and (2) chlorophyll-specific particulate backscattering at 550 nm ≤ 0.0045 m2 mg−1. The classification criteria yielded an overall accuracy of 99% in identifying both K. brevis blooms and other waters from 194 cruise stations. The algorithm was validated using an independent dataset collected from both the central and south WFS between 2005 and 2006. After excluding data from estuarine and post-hurricane turbid waters, an overall accuracy of 94% was achieved with 86% of all K. brevis bloom data points identified successfully. Satisfactory algorithm performance (88% overall accuracy) was also achieved when using underway chlorophyll fluorescence and backscattering data collected during a repeated alongshore transect between Tampa Bay and Florida Bay in 2005 and 2006. These results suggest that it may be possible to use presently available, commercial optical backscattering instrumentation on autonomous platforms (e.g. moorings, gliders, and AUVs) for rapid and timely detection and monitoring of K. brevis blooms on the WFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号