首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
苏日古嘎  张金屯  王永霞 《生态学报》2013,33(11):3394-3403
物种多样性是群落结构和功能复杂性的一种度量,物种多样性的空间分布格局受许多环境因子的影响.运用多样性指数,多层感知器网络,分析了松山保护区森林群落物种多样性与群落类型、结构和生境之间的关系.结果表明:(1)大果榆+山杨混交林、油松+青杨混交林物种丰富度、多样性和均匀度均较高,而大果榆林、华北落叶松林的各项指数值均较低.Patrick指数和Shannon-Weiner指数在森林群落中均表现为草本层>灌木层>乔木层;Pielou指数在榆林中表现为草本层>乔木层>灌木层,而在其他森林群落中表现为灌木层>草本层>乔木层.(2)功能层物种多样性在海拔梯度上的变化趋势不同,在乔木层,丰富度、多样性和均匀度随海拔的升高逐渐降低;在灌木层,丰富度、多样性和均匀度均呈比较明显的单峰曲线变化趋势;在草本层,丰富度和多样性随海拔的升高都呈下降趋势,而在草本层,均匀度变化不大.(3)用多层感知器网络预测功能层多样性效果很好,结果发现坡向对乔木层和灌木层物种多样性的影响最大,而海拔高度对草本层物种多样性的影响最大.  相似文献   

2.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

3.
分析了南亚热带常绿阔叶林不同大小和发育阶段林隙内树种多样性的变化规律.结果表明,在南亚热带常绿阔叶林中,多样性指数在<400m2的林隙中变化不大,但在400~500m2的林隙中达到最大,而在500~600m2的林隙中最小,在>600m2的林隙中又有所增大.树种多样性指数随林隙年龄的变化趋势是中间高两端低,即在20~50年期间的多样性最大,其次是20年以下的,50年以后的多样性相对最小.林隙更新层中树种多样性指数在500~600m2的林隙中达到最大,在>600m2和200~300m2的林隙中最小.林隙更新层树种多样性指数在林隙形成最初的10年内达到最大值,但随着林隙年龄的增加,总体上表现出下降趋势,在30~40年和50~60年左右又分别形成两个相对的峰值.物种丰富度的变化趋势总体上与树种多样性指数相一致.不同大小和发育阶段的林隙通过其生态因子的改变,对不同树种的更新起到了不同的作用,从而使得不同大小和发育阶段的林隙中树种的多样性特征不同.林隙是维持南亚热带常绿阔叶林树种多样性的一个重要机制.  相似文献   

4.
Microenvironmental variability and species diversity in gaps and forest understorey were studied to assess the role of treefall gaps in maintaining composition and patchy distribution in a broad-leaved sub-tropical climax forest, Mawphlang, Meghalaya, India. Photon flux density was higher in gaps than in the surrounding understorey. Relative humidity was low and the litter layer was relatively thin in gaps throughout the year. Soil moisture and photon flux density in the gaps significantly varied between seasons and gaps of different sizes. Relative humidity significantly varied between seasons but difference among gaps was insignificant. Among-gap and among-season variations in soil and air temperature were insignificant.The number of tree species in the gaps was positively correlated with gap area, and tree species abundance showed higher equitability in larger than in smaller gaps. In gaps, -diversity was highest for herbs and lowest for shrubs. -diversity was highest for shrubs and lowest for tree seedlings. -diversity of tree seedlings was higher in the gaps than in the forest understorey. Conversely, -diversity was higher in the understorey than in the gaps. Low species similarity for tree seedlings among the gaps could be an effect of patchy distribution of parent tree species in the forest. Thus a significant change in light and moisture regimes along the gap size gradient played an important role in influencing the composition and abundance of shade tolerant and intolerant tree species in gaps on one hand, and affected the overall species diversity of the forest, on the other.  相似文献   

5.
Tropical ecosystems are globally important for bird diversity. In many tropical regions, land‐use intensification has caused conversion of natural forests into human‐modified habitats, such as secondary forests and heterogeneous agricultural landscapes. Despite previous research, the distribution of bird communities in these forest‐farmland mosaics is not well understood. To achieve a comprehensive understanding of bird diversity and community turnover in a human‐modified Kenyan landscape, we recorded bird communities at 20 sites covering the complete habitat gradient from forest (near natural forest, secondary forest) to farmland (subsistence farmland, sugarcane plantation) using point counts and distance sampling. Bird density and species richness were on average higher in farmland than in forest habitats. Within forest and farmland, bird density and species richness increased with vegetation structural diversity, i.e., were higher in near natural than in secondary forest and in subsistence farmland than in sugarcane plantations. Bird communities in forest and farmland habitats were very distinct and very few forest specialists occurred in farmland habitats. Moreover, insectivorous bird species declined in farmland habitats whereas carnivores and herbivores increased. Our study confirms that tropical farmlands can hardly accommodate forest specialist species. Contrary to most previous studies, our findings show that structurally rich tropical farmlands hold a surprisingly rich and distinct bird community that is threatened by conversion of subsistence farmland into sugarcane plantations. We conclude that conservation strategies in the tropics must go beyond rain forest protection and should integrate structurally heterogeneous agroecosystems into conservation plans that aim at maintaining the diverse bird communities of tropical forest‐farmland mosaics.  相似文献   

6.

Questions

Do vascular plant species richness and beta‐diversity differ between managed and structurally complex unmanaged stands? To what extent do species richness and beta‐diversity relate to forest structural attributes and heterogeneity?

Location

Five national parks in central and southern Italy.

Methods

We sampled vascular plant species composition and forest structural attributes in eight unmanaged temperate mesic forest stands dominated or co‐dominated by beech, and in eight comparison stands managed as high forests with similar environmental features. We compared plant species richness, composition and beta‐diversity across pairs of stands (unmanaged vs managed) using GLMM s. Beta‐diversity was quantified both at the scale of each pair of stands using plot‐to‐plot dissimilarity matrices (species turnover), and across the whole data set, considering the distance in the multivariate species space of individual plots from their centroid within the same stand (compositional heterogeneity). We modelled the relationship between species diversity (richness and beta‐diversity) and forest structural heterogeneity and individual structural variables using GLMM s and multiple regression on distance matrices.

Results

Species composition differed significantly between managed and unmanaged stands, but not richness and beta‐diversity. We found weak evidence that plant species richness increased with increasing levels of structural heterogeneity and canopy diversification. At the scale of individual stands, species turnover was explained by different variables in distinct stands, with variables related to deadwood quantity and quality being selected most often. We did not find support for the hypothesis that compositional heterogeneity varies as a function of forest structural characteristics at the scale of the whole data set.

Conclusions

Structurally complex unmanaged stands have a distinct herb layer species composition from that of mature stands in similar environmental conditions. Nevertheless, we did not find significantly higher levels of vascular plant species richness and beta‐diversity in unmanaged stands. Beta‐diversity was related to patterns of deadwood accumulation, while for species richness the evidence that it increases with increasing levels of canopy diversification was weak. These results suggest that emulating natural disturbance, and favouring deadwood accumulation and canopy diversification may benefit some, but not all, facets of plant species diversity in Apennine beech forests.
  相似文献   

7.
This study describes diversity patterns in the flora of the Campo-Ma’an rain forest, in south Cameroon. In this area, the structure and composition of the forests change progressively from the coastal forest on sandy shorelines through the lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis, to the submontane forest at higher elevations and the mixed evergreen and semi-deciduous forest in the drier Ma’an area. We tested whether there is a correlation between tree species diversity and diversity of other growth forms such as shrubs, herbs, and lianas in order to understand if, in the context of African tropical rain forest, tree species diversity mirrors the diversity of other life forms or strata. Are forests that are rich in tree species also rich in other life forms? To answer this question, we analysed the family and species level floristic richness and diversity of the various growth forms and forest strata within 145 plots recorded in 6 main vegetation types. A comparison of the diversity within forest layers and within growth forms was done using General Linear Models. The results showed that tree species accounted for 46% of the total number of vascular plant species with DBH ≥1 cm, shrubs/small trees 39%, climbers 14% and herbs less than 1%. Only 22% of the diversity of shrubs and lianas could be explained by the diversity of large and medium sized trees, and less than 1% of herb diversity was explained by tree diversity. The shrub layer was by far the most species rich, with both a higher number of species per plot, and a higher Shannon diversity index, than the tree and the herb layer. More than 82% of tree species, 90% of shrubs, 78% of lianas and 70% of herbaceous species were recorded in the shrub layer. Moreover, shrubs contributed for 38% of the 114 strict and narrow endemic plant species recorded in the area, herbs 29%, trees only 20% and climbers 11%. These results indicate that the diversity of trees might not always reflect the overall diversity of the forest in the Campo-Ma’an area, and therefore it may not be a good indicator for the diversity of shrubs and herbaceous species. Furthermore, this suggests that biodiversity surveys based solely on large and medium sized tree species (DBH ≥0cm) are not an adequate method for the assessment of plant diversity because other growth form such as shrubs, climbers and herbs are under-represented. Therefore, inventory design based on small plots of 0.1 ha, in which all vascular plants with DBH ≥1 cm are recorded, is a more appropriate sampling method for biodiversity assessments than surveys based solely on large and medium sized tree species.  相似文献   

8.
Aims With the aim of understanding why some of the world's forests exhibit higher tree beta diversity values than others, we asked: (1) what is the contribution of environmentally related variation versus pure spatial and local stochastic variation to tree beta diversity assessed at the forest plot scale; (2) at what resolution are these beta‐diversity components more apparent; and (3) what determines the variation in tree beta diversity observed across regions/continents? Location World‐wide. Methods We compiled an unprecedented data set of 10 large‐scale stem‐mapping forest plots differing in latitude, tree species richness and topographic variability. We assessed the tree beta diversity found within each forest plot separately. The non‐directional variation in tree species composition among cells of the plot was our measure of beta diversity. We compared the beta diversity of each plot with the value expected under a null model. We also apportioned the beta diversity into four components: pure topographic, spatially structured topographic, pure spatial and unexplained. We used linear mixed models to interpret the variation of beta diversity values across the plots. Results Total tree beta diversity within a forest plot decreased with increasing cell size, and increased with tree species richness and the amount of topographic variability of the plot. The topography‐related component of beta diversity was correlated with the amount of topographic variability but was unrelated to its species richness. The unexplained variation was correlated with the beta diversity expected under the null model and with species richness. Main conclusions Because different components of beta diversity have different determinants, comparisons of tree beta diversity across regions should quantify not only overall variation in species composition but also its components. Global‐scale patterns in tree beta diversity are largely coupled with changes in gamma richness due to the relationship between the latter and the variation generated by local stochastic assembly processes.  相似文献   

9.
Question: Is tree regeneration in canopy gaps characterized by chance or predictable establishment. Location: Coastal scarp forests, Umzimvubu district, Eastern Cape Province, South Africa. Methods: Estimation of richness of gap‐filling species across canopy gaps of different size. Data are compared with regeneration under the canopy. Probability of self‐replacement of gap forming species is calculated. Results: Forest area under natural gap phase was 7.8%, caused mostly by windthrow (54%). The abundance and average size of gaps (87.8 m2) suggests that species diversity may be maintained by gap dynamics. However, only four of 53 gap‐filler species displayed gap size specialization and these were pioneer species. An additional 13 species were more common in larger gaps but there was no gradient in composition of gap‐filler species across gap size (p= 0.61). Probabilities of self‐replacement in a gap were low (< 0.3) and common canopy species were equally abundant in gaps and the understorey. Species composition in gaps showed no pattern of variation, i.e. was unpredictable, which suggests absence of a successional sequence within tree‐fall gaps. There was also only a slight increase in species richness in gaps at intermediate levels of disturbance. Conclusions: Coastal scarp forest appears not to comprise tightly co‐evolved, niche‐differentiated tree species. Unpredictable species composition in gaps may be a chance effect of recruitment limitation of species from the species pool. Chance establishment slows competitive exclusion and may maintain tree diversity in these forests. These data suggest that current levels (≤ 3 gaps per ha) of selective tree harvesting may not cause a reduction in species richness in this forest.  相似文献   

10.
Tree species diversity of four tropical forest vegetation types was investigated in Xishuangbanna, southwestern China. These are: tropical seasonal rain forest, tropical montane rain forest, evergreen broad-leaved forest and monsoon forest over limestone. A total of 17 samples were taken and four species diversity indices were calculated: Shannon-Wiener's H, the complement of Simpson's index, d, Fisher's and evenness index E. The results reveal the long-tailed rank/abundance diagrams of these forests. However, this feature is greatly reduced in the samples of monsoon forest over limestone. Tropical seasonal rain forest shows the highest tree species diversity of all four vegetation types. Owing to the variation of microenvironment, diversity values within the same vegetation type vary between the samples from different patches. The tree species diversity of single-dominant rain forest is not significantly lower than that of mixed rain forest, because the dominant species of some single-dominant rain forests are principally in the emergent layer. This is composed of sparse and huge trees of one species and, consequently, creates a unique canopy architecture and more heterogeneous microenvironments for the more diversified species composition under the emergent layer. The occurrence of tree species with small population sizes, particularly of species represented by only one individual, is highly correlated with the tree species diversity of the local forest vegetation. They are crucial elements in the richness of local biodiversity.  相似文献   

11.
东北阔叶红松林群落类型划分及物种多样性   总被引:4,自引:0,他引:4  
运用TWINSPAN分类方法,对我国东北阔叶红松林群落类型进行划分,对乔木层树种进行聚类,并对东北地区长白山、大秃顶子山、平顶山和丰林保护区4个样点的物种多样性进行对比研究.结果表明:24个样地中共记录到维管束植物264种,隶属于64科147属.经过聚类,将阔叶红松林划分为3个群落类型组和7个群落类型;同时,将33个乔木树种间的关联性划分为8组.阔叶红松林群落的物种丰富度和多样性为草本层>灌木层>乔木层.在4个样点中,长白山的样地平均物种丰富度最高,为63.长白山和大秃顶子山乔木层和灌木层的物种多样性略高于平顶山和丰林保护区;丰林保护区草本层的物种多样性为2.83,高于其它3个样点.平顶山灌木层和长白山草本层的均匀度最低,分别为0.71和0.80.  相似文献   

12.
Comparisons are made between a virgin forest remnant (primeval forest) and a lightly managed (near‐to‐nature) forest with regard to horizontal forest structures, the structure of forest stands, and the diversity of plant and bird species. In the virgin forest remnant the proportion of canopy gaps is smaller, there are no stands in the developmental phase of a pole stand (10 < cm d.b.h. < 30 cm), and both the growing stock and the proportion of less vigorous trees are considerably greater. In addition, there is a higher percentage of dead trees, a smaller proportion of minor tree species and a considerably lower diversity of plants. The diversity of bird species is similar for each forest type, but rare bird species are confined to the virgin forest remnant. The biological differences between the two types of forest have led to changes in the physical site conditions. The results of the research are valuable in assessing the consequences of near‐to‐nature forest management.  相似文献   

13.
Large areas of tropical moist forests have been converted to cattle pastures, generating complex landscapes where different habitats are represented by small patches with an uneven spatial distribution. Here, we describe how bird communities respond to the different elements present in a livestock landscape that was originally dominated by tropical moist forest. We surveyed six habitats: open pastures, pastures with shrubs, early‐ and middle‐secondary forests, mature forest, and pastures invaded by bracken ferns (Pteridium aquilinum). Bird diversity was high in secondary and mature forests, and low in fern‐invaded sites and open pastures. Fern‐dominated sites had the lowest bird species richness, and trophic guild diversity of all habitats. Habitat structure affected both bird species richness and densities in similar ways. Tree species richness was the habitat attribute that had a bigger positive effect on bird species richness. Bird community structure varied among sampled habitats, separating habitats in two major groups (forests and pastures). Our data indicate that bracken fern‐invaded pastures were the worst habitat condition for avian communities. To increase bird diversity, we recommend to eliminate or manage bracken fern and to increase shrub and tree cover in open pastures to provide food resources and shelter for birds. Finally, we encourage the maintenance of secondary and mature forest remnants as a strategy to conserve resident birds within a landscape dominated by livestock activities.  相似文献   

14.

Aim

Deforestation of the Atlantic Forest of eastern Paraguay has been recent but extensive, resulting in a fragmented landscape highly influenced by forest edges. We examined edge effects on multiple dimensions of small mammalian diversity.

Location

Forest fragments of eastern Paraguayan Atlantic Forest.

Methods

We trapped small mammal species at different distances from the forest edge (DTE) in reserves and estimated multiple dimensions of diversity per site. Similarity analysis identified species clusters that best described the patterns of diversity across reserves. Multivariate ordination and linear mixed models were used to determine the influence of DTE on various dimensions of small mammal diversity.

Results

There was an increase in richness and abundance along a DTE gradient, and remnants with higher edge:area ratios showed higher richness and abundance, independent of remnant size. Species at edges were generalists, open-habitat species or exotic species (spillover effect). We found higher phylogenetic diversity and functional richness and divergence towards forest edges. Spillover of non-forest and invasive species best explained richness, generalist forest species best explained total abundance, abundance of Hylaeamys megacephalus best explained diversity and evenness metrics and the presence of Marmosa paraguayana best explained various phylogenetic diversity models. None of the models that included megafauna or social factors were shown to be important in explaining patterns as a function of DTE.

Main Conclusions

We found strong support for a spillover effect and mixed support for complementary resource use and enhanced habitat resources associated with ecotones. Generalists characterized edge assemblages but not all generalists were equivalent. Edges showed more phylogenetically and functionally distinct assemblages than the interior of remnants. There was a conservation of functional diversity; however, open-habitat species, habitat generalists and exotic species boosted diversity near forest edges. Mechanisms governing diversity along forest edges are complex; disentangling those mechanisms necessitates the use of multiple dimensions of diversity.  相似文献   

15.
不同植被类型植物物种多样性   总被引:9,自引:1,他引:8  
为了评价大面积人工种植杜仲对当地植物多样性的影响,以河南省汝阳县不同植被类型为研究对象,通过群落学调查,运用重要值、Shannon-Wiener物种多样性指数(H)、Simpson物种多样性指数(D)和均匀度指数(JH')等指标,统计分析杜仲人工林、温带落叶阔叶林(以下简称次生林)和撂荒地3种不同植被类型的植物物种多样性,探讨杜仲种植对植物多样性的影响。调查发现,杜仲林样地中出现植物82种,隶属39科63属,草本层为最发达的一层;次生林样地中出现植物70种,隶属32科62属,乔木层为最发达层;撂荒地样地中出现植物84种,隶属35科69属,无乔木层。杜仲林物种丰富度和多度均不亚于次生林和撂荒地,且杜仲林草本层物种丰富度和植株总数均高于次生林。统计分析显示,杜仲林乔木层、灌木层和草本层多样性指数H和D值、均匀度指数JH'值与其它两种植被类型相比无显著性差异(P0.05)。因此,种植杜仲过程中采用合理密度,适当管理,不仅能提供叶、花、果等资源,而且能够丰富草本植物的种类和数量,增加植物物种多样性。  相似文献   

16.
长白山自然保护区阔叶红松林林隙更新的研究   总被引:46,自引:6,他引:40  
通过对林隙及非林隙林分组成树种数量特征的对比分析,研究了长白山自然保护区阔叶红松林中主要树种对林隙的更新反应特点,阐述了林隙在阔叶红松林结构与多样性维持中的作用.随着林隙与非林隙的交替变化,红松和阔叶树以及主林层和中下层树种的相对优势(或重要性)亦呈现出交替变化的规律.林隙提高了阔叶红松林的物种丰富度,增加了其多样性,为不同特性物种的共存提供了可能,从而保持了阔叶红松林的整体稳定性.  相似文献   

17.
采用典型抽样法和生态群落学调查法对黑龙江凉水国家级自然保护区紫椴(Tilia amurensis)红松(Pinus koraiensis)林、蒙古栎(Quercus mongolica)红松林及白桦(Betula platyphylla)次生林的植物群落结构特征和物种多样性进行了研究。结果表明,紫椴红松林有维管束植物31种,隶属21科,25属;蒙古栎红松林有维管束植物32种,隶属25科,28属;白桦次生林有维管束植物31种,隶属20科,28属。白桦次生林乔木层和草本层的物种丰富度S指数显著高于2种阔叶红松林,而其灌木层的物种丰富度S指数最低;3种林型乔木层的Simpson物种多样性指数无显著差异,紫椴红松林的灌木层Simpson指数显著高于其他2种林型,3种林型草本层之间的Simpson指数差异显著;紫椴红松林乔木层的Shannon-Wiener物种多样性指数显著低于其他2种林型,白桦次生林灌木层的Shannon-Wiener指数显著低于2种阔叶红松林,蒙古栎红松林草本层的Shannon-Wiener指数最高;此外,蒙古栎红松林乔木层的Pielou均匀度指数显著高于其他林型,而3种林型灌木层的Pielou指数无显著差异,紫椴红松林草本层的Pielou指数最低。  相似文献   

18.
西双版纳热带山地雨林的植物多样性研究   总被引:19,自引:1,他引:18       下载免费PDF全文
 根据6块样地的调查资料,分析了西双版纳热带山地雨林植物多样性特征。结果表明:在2 500 m2的样地上,西双版纳热带山地雨林群落共有植物物种99~181种。其中乔木层的物种丰富度(S)为54~113,Shannon-Wiener指数(H′)为1.648 7~4.049 1,Simpson指数(λ)为0.503 5~0.969 5,Pielou 均匀度指数(Jsw)为0.413 3~0.854 9。灌木层的S为35~89,H′为2.413 2~3.716 2,λ为0.762 7~0.958 2,Jsw为0.678 8~0.859 3。草本层的各指数值:S为31~65,H′ 为2.792 1~3.499 2,λ为0.902 0~0.938 2,Jsw为0.729 3~0.838 2。低海拔带上的山地雨林(Ⅰ号、Ⅱ号样地)的各指数值(H′、λ、Jsw)在群落不同层次中均表现为草本层 > 灌木层 > 乔木层,而物种丰富度在不同层次中无一定变化规律;高海拔带上山地雨林(Ⅲ号、Ⅳ号、Ⅴ号、Ⅵ号样地)的物种丰富度和多样性指数(H′、λ)表现为乔木层 > 灌木层 > 草本层,而均匀度指数(Jsw)在不同层次中则无一定变化趋势。高海拔带上的山地雨林乔木层和灌木层的物种丰富度、多样性和均匀度指数均明显高于低海拔带上的山地雨林,这是由于前者所处生境较为优越。沿着海拔梯度,群落乔木层的物种丰富度、多样性和均匀度指数均在中等海拔高度地带(约1 200~1 220 m)达到最高值,这是由于中等海拔高度的山地雨林位于生境条件最为优越的沟谷地带,而且与低地季节雨林毗邻,热带雨林植物成分丰富。  相似文献   

19.
The demand for wood from short rotation coppice (SRC) plantations as a renewable energy source is currently increasing and could affect biodiversity in agricultural areas. The objective was to evaluate the contribution of SRC plantations to phytodiversity in agricultural landscapes assessed as species richness, species–area relationships, Shannon indices, detrended correspondence analysis on species composition, Sørensen similarities, habitat preference proportions, and species proportions found in only one land use. Vegetation surveys were conducted on 12 willow (Salix spp.) and three poplar (Populus spp.) coppice sites as well as on surrounding arable lands, grasslands and forests in central Sweden and northern Germany. SRC plantations were richer in plant species (mean: 30 species per 100 m²) than arable land (10), coniferous forests (13) and mixed forests in Germany (12). Comparing SRC plantations with other land uses, we found lowest similarities in species composition with arable lands, coniferous forests and German mixed forests and highest similarities with marginal grassland strips, grasslands and Swedish mixed forests. Similarity depended on the SRC tree cover: at increased tree cover, SRC plantations became less similar to grasslands but more similar to forests. The SRC plantations were composed of a mixture of grassland (33%), ruderal (24%) and woodland (15%) species. Species abundance in SRC plantations was more heterogeneous than in arable lands. We conclude that SRC plantations form novel habitats leading to different plant species composition compared to conventional land uses. Their landscape‐scale value for phytodiversity changes depending on harvest cycles and over time. As a structural landscape element, SRC plantations contribute positively to phytodiversity in rural areas, especially in land use mosaics where these plantations are admixed to other land uses with dissimilar plant species composition such as arable land, coniferous forest and, at the German sites, also mixed forest.  相似文献   

20.
准确理解天然林林分群落特征及其与物种多样性耦合关系是提升天然林管理、达到多样性保护的关键。选择大兴安岭呼中地区典型落叶松林、杂木林、白桦落叶松林为研究对象,分别对乔木层、灌木层和草本层特征(高度、胸径、冠幅、盖度等)进行调查并计算丰富度指数、多样性指数和均匀度指数,旨在探究林分间差异及其耦合关系变化。结果表明:(1)乔木层的树高、枝下高表现出杂木林落叶松林白桦落叶松(P0.05);落叶松林的胸径比白桦落叶松林和杂木林的高出6%和11%;灌木层的高度、盖度、地径、冠幅和草本层多度、盖度、高度在森林类型间均未表现出显著差异。(2)3个森林类型的乔、灌、草丰富度指数R、Shannon-Wiener指数及Simpson指数均表现出杂木林最大,乔木层和草本层呈相同规律,即杂木林白桦落叶松林落叶松林,而灌木层表现出杂木林落叶松林白桦落叶松林;白桦落叶松林和杂木林的乔木层均匀度Pielou指数和Alatalo指数约为落叶松林的3倍左右,而在灌木层和草本层在森林类型间差异不显著(P0.05)。(3)典范对应分析(CCA)结果表明林分群落特征和生物多样性关系存在明显森林类型间差异。总体表现为灌木特征(冠幅、地径)、草本层特征(盖度、多度和高度)对多样性均有较大影响;白桦落叶松林和杂木林的胸径对多样性影响明显,而落叶松林的乔木高度(树高、枝下高)对多样性影响较大。杂木林随着灌木盖度、草本高度的增加,草本物种多样性降低、乔木多和灌木物种多样性增加;而落叶松林相同的多样性变化多伴随草本高度增加、多度和盖度变小。灌木层物种多样性增加多与乔木和草本物种多样性降低相伴随,在杂木林中同时伴随着乔木胸径和草本的盖度、多度增大、灌木冠幅变小,而白桦落叶松林则伴随灌木冠幅和草本多度盖度的减小。以上结果表明,林分群落特征与物种多样性存在耦合关系,上述解耦合结果为通过维持良好森林结构、多样性保护具有实践意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号