首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Fire intensity measures the heat output of a fire, and variation in fire intensity has been shown to have many effects on the demography of plant species, although the consequent effects on the floristic composition of communities have rarely been quantified. The effects of variation in fire intensity on the floristic composition of dry sclerophyll vegetation with different fire histories near Sydney was estimated. In particular, differences in species abundance of woodland and shrubland communities subjected to four fire‐intensity classes: unburnt, low intensity (<500 kW m?1), medium intensity (500–2500 kW m?1) and high intensity (>2500 kW m?1) were examined. The samples had a standardized previous fire frequency and season, thus minimizing the effects of other aspects of the fire regime. There was a clear effect of fire intensity on the relative abundances of the vascular plant species, with increasing intensity of the fire producing vegetation that was increasingly different from the unburnt vegetation. This pattern was repeated in both the woodland and shrubland vegetation types, suggesting that it was not an artefact of the experimental conditions. However, the effects of fire intensity on floristic composition were no greater than were the differences between these two similar vegetation types, with variation in fire intensity accounting for only approximately 10% of the floristic variation. Nevertheless, the effects of fire intensity on the abundance of individual species were consistent across taxonomic groups, with the monocotyledon and Fabaceae species being more abundant at higher than lower intensities, the Proteaceae and Rutaceae more abundant at intermediate intensities, and the Epacridaceae more abundant at lower rather than higher intensities. The number of fire‐tolerant species increased with increasing fire intensity, and those fire‐tolerant species present were most abundant in the areas burnt with medium intensity. The number of fire‐sensitive species did not respond to fire intensity, and those species present were most abundant in the areas burnt with low intensity. This suggests that either fire‐sensitive species respond poorly to higher fire intensities or fire‐tolerant species respond poorly to lower fire intensities, perhaps because of differences in seed germination, seedling survival or competition among adults.  相似文献   

2.
Abstract Fire frequency is the number of fires experienced by a particular community within a given time period. This variable can potentially be resolved into a number of interacting components, including time since the most recent fire, and the length of the inter-fire intervals. We estimated the effects of inter-fire intervals and sequences of inter-fire intervals, independently of time-since-fire, on the floristic composition of 26 samples from dry sclerophyll vegetation with different fire histories in Brisbane Water National Park near Sydney. In particular, we examined the effects in the recent fire history of: the length of the shortest inter-fire interval (1–26 years); repetition of very short (1–3 years) and medium (7–14 years) inter-fire intervals; and recovery from very short (1–3 years) and short (4–6 years) inter-fire intervals. Our analyses suggest that inter-fire interval may account for about 55% of the floristic variation among our samples, which were taken at a uniform 18 months after the most recent fire. There appear to be at least three general and unrelated effects of the recent history of inter-fire intervals on the floristic composition of this vegetation: (i) shorter inter-fire intervals were associated with a reduction in the number of species present in the community, along with a more unequal abundance of the remaining species, particularly of those large Proteaceae shrubs that often dominate the community biomass in dry sclerophyll shrublands of southeastern Australia; (ii) the presence of an inter-fire interval that is 1–6 years long was associated with an additional reversible reduction in the number of fire-sensitive species present in the community, particularly those common shrub species with a canopy-stored seed-bank and non-leguminous species with a soil-stored seed-bank; and (iii) repetition of inter-fire intervals that are 1–5 years long was associated with an increase in the abundance of herbaceous fire-tolerant species. This means that variation in these characteristics is associated with changes in abundance of different plant species, and that the floristic composition of any one area can be influenced in three different ways by these variables. Management of fire for plant species conservation must therefore be based on both length of time-since-fire and length of inter-fire intervals if it is to be effective.  相似文献   

3.
环境因子对太白山高山植被物种组成和丰富度的影响   总被引:4,自引:0,他引:4  
任学敏  杨改河  朱雅  王小立  王得祥 《生态学报》2014,34(23):6993-7003
高山植被是一类具有重要生态和经济价值的植被类型,了解其物种组成和丰富度与环境因子的关系对于该类型植被保护、管理以及植物资源合理开发利用策略的制订具有重要指导意义。基于太白山高山植被和环境因子野外调查及室内实验数据,采用CCA排序法探索了环境因子对物种组成的影响,偏CCA计算了各环境因子对物种组成的总效应和净效应,GLM回归模型拟合了物种丰富度对环境因子的响应。结果表明,13个环境因子共解释了物种组成变异的31.7%,其中海拔、坡度、土壤碱解氮含量、全磷含量、坡向、岩石盖度、p H值、土壤厚度、有机质含量、有效磷含量和全氮含量对物种组成的净效应达显著水平(P0.05),但其作用强度依次减小。GLM拟合结果显示,物种丰富度与环境因子存在4种显著(P0.05)关系,即物种丰富度沿海拔和土壤厚度梯度单调递增,沿坡度和土壤全氮含量梯度单调递减,沿坡向、土壤p H值、碱解氮含量和全磷含量梯度呈单峰分布,与土壤有机质含量和全钾含量呈倒单峰关系。在这些显著的环境因子中,海拔、土壤碱解氮含量,p H值、有机质含量和坡向解释的物种丰富度变异量最大。  相似文献   

4.
The coastal heathlands of the Royal National Park are impacted by both fire and herbivory by introduced deer, and to date these two factors have been dealt with independently in the management of natural areas. In recent years, there has been increasing recognition for a more integrated approach to manage these two disturbance agents. Fire and its role in Australian heathlands are well known, while impacts from introduced deer and the combined effects of fire and introduced deer are still poorly understood. In this study, we investigated the effects of fire and Javan rusa deer (Cervus timorensis) on both vegetation cover and floristics. The percentage cover of plants at different height layers and the presence/absence of individual species were recorded at sites representing two different burn histories (1993/1994 and 2000/2001) and deer presence or absence. Fire significantly reduced vegetation cover at low (<50 cm) and intermediate heights (50–100 cm), while deer presence affected grasses and sedges, and low vegetation at more recently burnt sites. Rusa deer also affected composition of the plant species assemblages, but no such effect was found for fire. Understanding the influence of each disturbance factor independently and together in the heathlands will be critical for implementing a more robust framework for future management.  相似文献   

5.
6.
Cross‐ribbed rolling is a technique routinely used to construct firebreaks along the margins and access tracks of Ngarkat Conservation Park, South Australia. These breaks, approximately 20 m wide, contain regenerating heath communities with an overstorey of mallee. The effects of cross‐ribbed rolling on community composition and succession were examined in a single fire patch on the western boundary of Ngarkat Conservation Park across 12 sites located in vegetation burnt approximately 35 years ago. Two areas at each site were investigated, one on rolled communities and the other running parallel on the adjacent unrolled vegetation. There was also a difference in the rolled communities sampled; six were on a 3‐year‐old break, whereas the remainder were on a 5‐year‐old break. Results indicate no changes to species richness or diversity when comparing rolled and unrolled areas, but there was some alteration to species composition in rolled communities. These results suggest that under current rolling regimes, the main effect is a reduction in biomass and some accompanying alteration to species composition, but not a reduction in overall species diversity or an increase in weeds.  相似文献   

7.
局域和区域过程共同控制着群落的物种多样性:种库假说   总被引:7,自引:2,他引:5  
解释群落的物种多样性大小是生态学研究的一个重要的理论和实践问题。人们提出了群落物种多样性的多种假说, Zobel等人提出的种库假说(species pool hypothesis)是生物多样性理论研究的重要发展。该假说认为, 一个群落的物种多样性不仅与环境条件和生态过程(ecological process)(如竞争、捕食)有关, 也受区域种库(regional species pool)的限制。区域种库是指一个地区可进入某一群落的潜在物种数量, 它由地史过程(如冰期、地质年代)和区域过程(物种形成、迁移扩散以及消亡)所决定。按照种库假说, 某一生境类型的面积越大, 地质年代越古老, 物种形成的机会也就越多, 因而能适应和分布于该生境的物种也就越多, 实际群落中的物种丰富度也就越高。种库在空间上主要有两个层次: 区域种库和实际种库, 前者指某一生境所拥有的潜在物种数量, 主要由生物地理过程(biogeographic processes)所决定; 后者则为调查的群落中实际出现的物种数量, 主要由竞争等生态过程和区域种库共同决定。本文对种库假说的基本概念、主要内容、种库确定方法等作了介绍, 并阐述了作者对这些问题的理解和认识。  相似文献   

8.
9.
Abstract Fire frequency is the number of fires experienced by a particular community within a given time period. This concept can potentially be resolved into a number of interacting variables, including: time since the most recent fire, the length of the inter-fire intervals, and the variability of the length of the inter-fire intervals. We estimated the effects of these three variables on the floristic composition of 65 samples from dry sclerophyll vegetation with different fire histories in Brisbane Water, Ku-ring-gai Chase and Royal National Parks near Sydney. Our analyses suggest that fire frequency may account for about 60% of the floristic variation among our samples. They confirm the hypothesis that the recent (<30 years) fire frequency produces effects on floristic composition of fire-prone communities that can recognizably be attributed both to the time since the most recent fire and to the length of the intervals between fires. These effects are equal in magnitude but are different in the nature of the floristic variation they are associated with. Increasing time-since-fire is associated with a decline in the evenness of fire-tolerant species, indicating that fewer of these species come to dominate the community in the prolonged absence of fire. Herbs and small shrubs decrease in abundance, while larger shrubs increase in abundance. Inter-fire intervals of decreasing length are associated with a decrease in the evenness of the fire-sensitive species, particularly those large Proteaceae shrubs that often dominate the community biomass in dry sclerophyll shrublands of southeastern Australia. Furthermore, the variation associated with inter-fire intervals is not necessarily solely related to the shortest inter-fire interval, but is related to combinations of inter-fire intervals through time. Thus, increasing variability of the length of the inter-fire intervals is associated with an increase in the species richness of both fire-sensitive and fire-tolerant species, implying that it may be variation of the inter-fire intervals through time that is primarily responsible for maintaining the presence of a wide variety of plant species in a particular community. Our results also suggest that the floristic variation associated with different inter-fire intervals decreases with increasing time-since-fire.  相似文献   

10.
11.
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta‐analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower‐latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher‐temperate latitudes generally replaced late‐successional specialists with early‐successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta‐analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.  相似文献   

12.
Scale‐dependency of pattern and process is well‐understood for many ecological communities; however, the influence of spatial scale (sampling grain) in detecting temporal change in communities is less well‐understood. The temperate lowland heathlands of south‐east Australia are one of the most fire‐prone ecosystems on earth. Despite the extensive literature documenting the effect of time since fire on heathlands, we know little about how sampling grain influences trends in vegetation variables over time, and whether these trends are scale‐dependent. Using 3500 ha of heathland in the Gippsland Lakes Coastal Park, south‐east Australia, we investigated how above‐ground species composition and diversity, and trends in these variables with increasing time since fire, were influenced by sampling grain (1 m2, 10 m2, 100 m2, 900 m2, 1 ha, 4 ha). Sampling grain influenced patterns detected in vegetation variables and in some instances, significantly affected their relationship with time since fire. Richness decreased with time since fire, with mean richness decreasing at three of the four grains, while total richness decreased at half of the sampled grains. Evenness (J) decreased with increasing time since fire for all grains except 1 m2. The decline in diversity (H) with time since fire appeared to be independent of scale, as all grains decreased significantly with increasing time since fire. Community heterogeneity demonstrated a weak response to time since fire across most grains. Changes in composition among young (0–6 years since fire), intermediate (9–19 years) and old (23–27 years) sites were dependent on sampling grain, with all grains exhibiting significant differences in composition, apart from the 1 m2 grain and the 100 m2 grain (presence/absence data). Overall, species composition, richness, evenness, diversity and community heterogeneity were dependent on the scale at which the vegetation was sampled. In addition, trends in many of these vegetation variables with increasing time since fire were scale‐dependent. This work provides strong evidence that sampling at multiple grains contributes substantially to understanding pattern and process in heathlands.  相似文献   

13.

Aim

To quantify how frogs in terrestrial environments respond to recurrent fire, and to what extent this is mediated by isolation from breeding sites or vegetation structure.

Location

Jervis Bay, south‐eastern Australia.

Methods

We used data from 8 years of pitfall trapping, collected via a random stratified design, to quantify frog occurrence at 110 locations. We then used an information theoretic approach to compare 13 logistic generalized linear mixed models, each of which related frog occurrence to a distinct combination of additive and interactive effects of fire, vegetation structure and proximity to known breeding sites.

Results

For all four species, the effect of one or more fire variables on frog occurrence depended on both the density of breeding sites in the surrounding area, or on the vegetation structure at the trap locality. A classic “fire averse” response of initial declines followed by post‐fire recovery did occur, but only in frequently burned, low‐quality terrestrial habitats (i.e., heath vegetation for Uperoleia tyleri, or locations with few available breeding sites for the remaining species), or in some cases, when suitable habitats were infrequently burned. However, a “fire‐dependent” result of negative effects of time since fire was also evident for some species and contexts.

Main conclusions

The effect of fire on frog occurrence can be mediated by environment. Therefore, a single species could be identified as either “fire dependent” or “fire averse” depending on the combination of isolation, vegetation types and fire histories in the study region. Failure to account for the context specificity of fire response curves could lead to incomplete conclusions regarding the effect of time since fire—or the cumulative impacts of multiple fires—on faunal assemblages.  相似文献   

14.
15.
新疆喀纳斯旅游区树种多样性垂直格局与自然火干扰   总被引:3,自引:0,他引:3  
采用典型样带调查法,通过对新疆喀纳斯旅游区树种多样性垂直格局及其与自然火干扰分布关系的研究,揭示了树种多样性沿海拔梯度的分布格局及其对自然火干扰的响应特征.结果表明:①树种多样性随海拔的升高呈现明显的下降态势(P<0.01),但树种多样性与海拔高度之间的相关程度不高(R2=0.2165),并且表现出以1900m为界的区域性变化特征.②所调查范围内共发生了8次自然火干扰事件,平均间隔时间为14a,干扰事件多集中在1900m以下的较低海拔区.③林分受自然火干扰作用后,树种多样性普遍表现出增加的特征.总体而言,海拔高度是影响喀纳斯森林群落树种多样性垂直分布格局形成的基本因素,但随机发生的自然火干扰是主导1900m以下较低海拔区树种多样性丰富的关键因素之一.  相似文献   

16.
明晰放牧干扰下高寒草甸植物丰富度与生物量的相关关系,为草地植物不同生长时期生物量的预测提供依据。设置6个放牧强度样地,连续3a放牧,2014年进行3个季节(6月、8月、10月)的植物丰富度和地上、地下生物量调查,对比分析放牧干扰下物种和生活型丰富度(生活型的种类)分别与地上、地下生物量的相关关系。结果表明:(1)物种和生活型丰富度与地上生物量均受放牧强度的显著影响,物种丰富度仅在8月与放牧强度显著负相关,生活型丰富度在10月随放牧强度单峰变化,地上生物量在不同季节均与放牧强度显著负相关,而地下生物量与放牧强度无关。(2)物种丰富度与地上和地下生物量均受季节的显著影响,物种丰富度和地上生物量仅在低强度放牧区随季节呈单峰变化,地下生物量在中等强度放牧区随季节呈单峰变化;生活型丰富度与季节无关。(3)放牧干扰前物种和生活型丰富度与地上和地下生物量均显著正相关。3a放牧后仅在8月,物种丰富度只与地上生物量显著正相关,生活型丰富度与地上和地下生物量均显著正相关。(4)对于不同放牧强度,物种丰富度仅在低强度放牧区与地上生物量显著正相关,而生活型丰富度在所有放牧强度区均与地上生物量显著正相关。综上所述,放牧干扰扰乱了高寒草甸丰富度与生物量之间的关系,尤其影响了物种丰富度与地下生物量之间的相关关系。生活型丰富度与地上生物量之间的显著关系不受放牧强度干扰,使生活型丰富度在预测生物量方面表现出优势。  相似文献   

17.
干扰对植物群落物种组成及多样性的影响   总被引:37,自引:6,他引:37  
毛志宏  朱教君 《生态学报》2006,26(8):2695-2701
在介绍了干扰的概念及其性质和干扰对物种多样性影响的有关假说基础上,以森林干扰为主要对象,探讨了干扰对植物群落物种组成的影响,并从干扰类型、干扰强度和干扰频率等几个方面阐述了干扰对植物群落物种多样性的影响;另外,还分析了重要的小尺度干扰——林隙在该方面的影响。分析总结出干扰对植物群落的影响差异主要与干扰特征、植物群落特征及植物的生物学特性和受干扰地点的资源条件有关。最后,总结分析了国内外在该方面研究存在的问题,并对今后研究提出一些建议,为相关工作提供参考。  相似文献   

18.
19.
20.
Abstract Plant species cover-abundance and density data were collected for 94 sample plots across a gradient from rocky uplands to sandy outwash plains in the northern part of Grampians (Gariwerd) National Park in western Victoria. Detrended correspondence analysis (DCA) was used to identify dominant gradients in species composition. A range of static (e.g. substrate type, soil depth, microclimate indicators) and dynamic (e.g. elapsed time since last fire) environmental variables were measured. Correlations were sought between these variables and vegetation patterns including those for richness (R) and Shannon-Weiner diversity (H′). The dominant gradient of vegetation change identified by DCA separated rocky sites and sites near ephemeral streams, from well-drained, sandy sites. Secondary gradients identified time since last fire as important for sandy sites, and altitude and aspect-related microclimate for rocky sites. Diversity was highest in the first 2 years after fire but showed no further decline in older sites. Overall, R and H' were negatively correlated with soil nutrient concentrations. On sandy sites R was high, but was low on rocky sites and near streams. Within the rocky sites, R was highest on cool, moist south and east slopes, and lowest on hot, dry north and west slopes. Explanations of diversity patterns based on inhibition of competitive exclusion due to stress and recurrent disturbance best fit the results presented here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号