首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Persistence of MS-2 and PRD-1 bacteriophages in an ultrapure water system   总被引:1,自引:0,他引:1  
The persistence of bacteriophages MS-2 and PRD-1 was evaluated in tap water, in reverse osmosis (RO) permeate, and in three locations within an ultrapure water system; ultrapure samples included pre- and post-UV sterilization and post-mixed bed ion exchange tank. The inactivation rates for MS-2 were calculated as log10 reduction per hour and per day: k = − (log10 C t/C o)/t. PRD-1 was found to persist with no significant loss of infectivity in all water purity environments evaluated. Inactivation of MS-2 was dependent on water quality and pH. Short-term inactivation rates for chlorinated tap water, post-RO, pre-UV, post-UV and post-ion exchange sample locations were 0.028, 0.455, 0.231, 0.191 and 0.168 log10 h−1, respectively. Long-term inactivation rates for chlorinated tap water, post-RO, pre-UV, post-UV and post-ion exchange sample locations were 0.485, 0.911, 0.605, 0.632 and 0.684 log10 day−1, respectively. Since phages were found to remain intact as well as to lyse in the ultrapure water environment, the phages have the potential to contaminate the ultrapure water environments of the microelectronics, pharmaceutical and power generation industries in both colloidal and dissolved form. Further work is proceeding to generate standardized and cost-effective methods to detect viruses in water environments. Received 16 September 1996/ Accepted in revised form 03 January 1997  相似文献   

2.
Although deep subterranean crystalline rocks are known to harbor microbial ecosystems, geochemical factors that constrain the biomass, diversity, and metabolic activities of microorganisms remain to be clearly defined. To better understand the geochemical and microbiological relationships, we characterized granitic groundwater collected from a 1,148- to 1,169-m-deep borehole interval at the Mizunami Underground Research Laboratory site, Japan, in 2005 and 2008. Geochemical analyses of the groundwater samples indicated that major electron acceptors, such as NO3 and SO42−, were not abundant, while dissolved organic carbon (not including organic acids), CH4 and H2, was moderately rich in the groundwater sample collected in 2008. The total number of acridine orange-stained cells in groundwater samples collected in 2005 and 2008 were 1.1 × 104 and 5.2 × 104 cells/mL, respectively. In 2005 and 2008, the most common phylotypes determined by 16S rRNA gene sequence analysis were both related to Thauera spp., the cultivated members of which can utilize minor electron donors, such as aromatic and aliphatic hydrocarbons. After a 3–5-week incubation period with potential electron donors (organic acids or CH4 + H2) and with/without electron acceptors (O2 or NO3), dominant microbial populations shifted to Brevundimonas spp. These geomicrobiological results suggest that deep granitic groundwater has been stably colonized by Thauera spp. probably owing to the limitation of O2, NO3, and organic acids.  相似文献   

3.
Solute mobilities in cuticular membranes of six species (Hedera helix, Malus domestica, Populus alba, Pyrus communis, Stephanotis floribunda, Strophantus gratus) were measured using plant hormones, growth regulators and other organic model compounds varying in molar volumes from 99 to 349 mL · mol−1 The dependence of mobilities (k*) on molar volume (V x ) was exponential and could be described with equations of the type log k*=log k*0 V x . The y-intercepts (log k*0) represent mobilities of a hypothetical solute of zero molar volume. The parameter β′ is a measure of size selectivity of cuticular membranes and no differences among the six species were observed. At 25 °C the average β′ was 0.0095 mol · mL−1. Solute mobility decreased by about a factor of 8.9 when molar volume increased by 100 mL · mol−1 and the mobility of a compound with V x  = 100 mL · mol−1 was about 700-fold higher than the mobility of a compound with V x  = 400 mL · mol−1. Size selectivity decreased with increasing temperatures and for Strophantusβ′-values of 1.6 × 10−2 to 8.0 × 10-4 mol · mL−1 were obtained for 10 and 30 °C, respectively. The-intercepts (log k*0) differed among plant species by 3 orders of magnitude and since size selectivity was the same for all species, solute mobilities for solutes having zero molar volumes were the sole cause for differences among species in solute mobilities and permeabilities. We argue that these differences in k*0 are related to tortuosity of the diffusion path. These results were used to derive an equation which predicts rates of cuticular penetration on the basis of k*0, the average size selectivity of 9.5 × 10−3 mol · mL−1 and the driving forces of penetration. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

4.
The intake of mycotoxin-contaminated feeds can lead to nutrient losses and may have adverse effects on animal health and on productivity. The aims of this study were (1) to determine the mycobiota present in poultry feed samples, and (2) to evaluate the natural occurrence of aflatoxin B1, fumonisin B1 and zearalenone. Fungal counts were similar between all culture media tested (103 CFU g−1). The most frequent genus isolated was Penicillium spp. (41.26%) followed by Aspergillus spp. (33.33%) and Fusarium spp. (20.63%). High precision liquid chromatography was applied to quantify aflatoxin B1 and fumonisin B1. Thin layer chromatography was used to determine zearalenone levels. Aflatoxin B1 values ranged between 1.2 and 17.5 μg kg−1. Fumonisin B1 levels ranged between 1.5 and 5.5 μg g−1. Zearalenone levels ranged between 0.1 and 7 μg g−1. The present study shows the simultaneous occurrence of two carcinogenic mycotoxins, aflatoxin B1 and fumonisin B1, together with another Fusarium mycotoxin (zearalenone) in␣feed intended for poultry consumption. Many samples contained AFB1 levels near the permissible maximum and it could affect young animals. A synergistic toxic response is possible in animals under simultaneous exposure.  相似文献   

5.
There is considerable interest in both Europe and the USA in the effects of microbiological fouling on stainless steels in potable water. However, little is known about the formation and effects of biofilms, on stainless steel in potable water environments, particularly in turbulent flow regimes. Results are presented on the development of biofilms on stainless steel grades 304 and 316 after exposure to potable water at velocities of 0.32, 0.96 and 1.75 m s−1. Cell counts on slides of stainless steel grades 304 and 316 with both 2B (smooth) and 2D (rough) finishes showed viable and total cell counts were higher at the higher flow rates of 0.96 and 1.75 m s−1, compared to a flow rate of 0.32 m s−1. Extracellular polysaccharide levels were not significantly different (P< 0.05) between each flow rate on all stainless steel surfaces studied. higher levels were found at the higher water velocities. the biofilm attached to stainless steel was comprised of a mixed bacterial flora including Acinetobacter sp, Pseudomonas spp, Methylobacterium sp, and Corynebacterium/Arthrobacter spp. Epifluorescence microscopy provided evidence of rod-shaped bacteria and the formation of stands, possibly of extracellular material attached to stainless steel at high flow rates but not at low flow rates. Received 04 February 1998/ Accepted in revised form 12 February 1999  相似文献   

6.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

7.
Vibrio species are ubiquitously distributed in marine waters all over the world. High genome plasticity due to frequent mutation, recombination, and lateral gene transfer enables Vibrio to adapt rapidly to environmental changes. The genus Vibrio comprises several human pathogens, which commonly cause outbreaks of severe diarrhea in tropical regions. In recent years, pathogenic Vibrio emerged also in coastal European waters. Little is known about factors driving the proliferation of Vibrio spp. in temperate waters such as the North Sea. In this study a quantification of Vibrio in the North Sea and their response to biotic and abiotic parameters were assessed. Between January and December 2009, Vibrio at Helgoland Roads (North Sea, Germany) were quantified using fluorescence in situ hybridization. Vibrio numbers up to 3.4 × 104 cells × mL−1 (2.2% of total microbial counts) were determined in summer, but their abundance was significantly lower in winter (5 × 102 cells × mL−1). Correlations between Vibrio and nutrients (SiO2, PO4 3−, DIN), Secchi depth, temperature, salinity, and chlorophyll a were calculated using Spearman rank analysis. Multiple stepwise regression analysis was carried out to analyze the additive influence of multiple factors on Vibrio. Based on these calculations, we found that high water temperature and low salinity best explained the increase of Vibrio cell numbers. Other environmental parameters, especially nutrients and chlorophyll a, also had an influence. All variables were shown to be subject to the overall seasonal dynamics at Helgoland Roads. Multiple regression models could represent an efficient and reliable tool to predict Vibrio abundances in response to the climate change in European waters.  相似文献   

8.
Effects of nitrate,(NO3) chloride (Cl), sulfate (SO42-, and acetate (Ac) on Cu2+ adsorption and affinity of the adsorbed Cu2+ were evaluated in two Fe and Al enriched variable charge soils from Southern China. The maximum adsorption of Cu2+ (M, a parameter from the Langmuir isotherm model) in the presence of different anions decreased in the order Cl > Ac > NO3 > SO42- for both soils. The clayey loamy soil (mixed siliceous thermic Typic Dystrochrept, TTD), developed on the Arenaceous rock, adsorbed less Cu2+ than the clayey soil (kaolinitic thermic Plinthudults, KTP), derived from the Quaternary red earths, regardless of anion type present in the medium. The affinity of adsorbed Cu2+ to both soils could be characterized by the Kd (distribution coefficient) values and successive extraction of the adsorbed Cu2+ with 1-mol NH4Ac L−1. The log10Kd value was smaller for the TTD soil than for the KTP soil and decreased in the order of Cl > NO3 > SO42- > Ac at low initial Cu2+ concentrations (≤40 mg Cu2+L−1), whereas at 80 mg Cu2+L−1, the log10Kd value was similar for NO3, SO42-, and Ac, but was slightly higher for Cl. Complete extraction of Cu2+ adsorbed in the presence of Ac was achieved. Influence of NO3 and SO42- on the affinity of adsorbed Cu2+ was similar, but the effects of Cl depended on the initial Cu2+ concentrations. The extracted percentage of the adsorbed Cu2+ in the presence of NO3 or SO42- increased with increasing Cu2+ adsorption saturation. The presence of Cl, NO3, or SO42- markedly decreased the equilibrium solution pH for both soils with increasing initial Cu2+ concentrations, and the delta pH values at the highest Cu2+ level were 0.5, 0.63, and 0.55 U for the TTD soil and 0.79, 0.84, and 0.93 U for the KTP soil, respectively for the three anions. The presence of Ac had a minimal influence on the equilibrium solution pH because of the buffering nature of the NaAc/HAc medium which buffered the released protons. The effects of anions on Cu2+ adsorption and affinity of the adsorbed Cu2+ were dependent on anion types and were apparently related to the altered surface properties caused by anion adsorption and/or the formation of anion– Cu2+ complexes.  相似文献   

9.
Carbon and water fluxes in a semiarid shrubland ecosystem located in the southeast of Spain (province of Almería) were measured continuously over one year using the eddy covariance technique. We examined the influence of environmental variables on daytime (photosynthetically active photons, F P >10 μmol m−2 s−1) ecosystem gas exchange and tested the ability of an empirical eco-physiological model based on F P to estimate carbon fluxes over the whole year. The daytime ecosystem fluxes showed strong seasonality. During two solstitial periods, summer with warm temperatures (>15 °C) and sufficient soil moisture (>10 % vol.) and winter with mild temperatures (>5 °C) and high soil moisture contents (>15 % vol.), the photosynthetic rate was higher than the daytime respiration rate and mean daytime CO2 fluxes were ca. −1.75 and −0.60 μmol m−2 s−1, respectively. Daytime evapotranspiration fluxes averaged ca. 2.20 and 0.24 mmol m−2 s−1, respectively. By contrast, in summer and early autumn with warm daytime temperatures (>10 °C) and dry soil (<10 % vol.), and also in mid-winter with near-freezing daytime temperatures the shrubland behaved as a net carbon source (mean daytime CO2 release of ca. 0.60 and 0.20 μmol m−2 s−1, respectively). Furthermore, the comparison of water and carbon fluxes over a week in June 2004 and June 2005 suggests that the timing—rather than amount—of spring rainfall may be crucial in determining growing season water and carbon exchange. Due to strongly limiting environmental variables other than F P, the model applied here failed to describe daytime carbon exchange only as a function of F P and could not be used over most of the year to fill gaps in the data.  相似文献   

10.
The initial responses to cold-water immersion, evoked by stimulation of peripheral cold receptors, include tachycardia, a reflex inspiratory gasp and uncontrollable hyperventilation. When immersed naked, the maximum responses are initiated in water at 10°C, with smaller responses being observed following immersion in water at 15°C. Habituation of the initial responses can be achieved following repeated immersions, but the specificity of this response with regard to water temperature is not known. Thirteen healthy male volunteers were divided into a control (C) group (n = 5) and a habituation (H) group (n = 8). Each subject undertook two 3-min head-out immersions in water at 10°C wearing swimming trunks. These immersions took place at a corresponding time of day with 4 days separating the two immersions. In the intervening period the C group were not exposed to cold water, while the H group undertook another six, 3-min, head-out immersions in water at 15°C. Respiratory rate (f R), inspiratory minute volume ( I) and heart rate (f H) were measured continuously throughout each immersion. Following repeated immersions in water at 15°C, the f R, I and f H responses of the H group over the first 30 s of immersion were reduced (P < 0.01) from 33.3 breaths · min−1, 50.5 l · min−1 and 114 beats · min−1 respectively, to 19.8 breaths · min−1, 26.4 l · min−1 and 98 beats · min−1, respectively. In water at 10°C these responses were reduced (P < 0.01) from 47.3 breaths · min−1, 67.6 l · min−1 and 128 beats · min−1 to 24.0 breaths · min−1, 29.5 l · min−1 and 109 beats · min−1, respectively over a corresponding period of immersion. Similar reductions were observed during the last 2.5 min of immersions. The initial responses of the C group were unchanged. It is concluded that habituation of the cold shock response can be achieved by immersion in warmer water than that for which protection is required. This suggests that repeated submaximal stimulation of the cutaneous cold receptors is sufficient to attenuate the responses to more maximal stimulation. Accepted: 6 February 1998  相似文献   

11.
Contamination of foods with pathogens such as Escherichia coli O157:H7 and Salmonella is a major concern worldwide and rapid, sensitive, and reliable methods are needed for detection of these organisms. Since these pathogens can contaminate similar foods and other types of samples, a multiplex polymerase chain reduction (PCR) was designed to allow simultaneous detection of both E. coli O157:H7 and Salmonella spp directly from enrichment cultures. Samples of apple cider, beef carcass wash water, ground beef, and bovine feces were inoculated with both E. coli O157:H7 and S. typhimurium at various bacterial levels. Following enrichment culturing for 20–24 h at 37°C in modified EC broth or buffered peptone water both containing novobiocin, the samples were subjected to a DNA extraction technique or to immunomagnetic separation then tested by the multiplex PCR assay. Four pairs of primers were employed in the PCR: primers for amplification of E. coli O157:H7 eaeA, stx 1/2 and plasmid sequences and for amplification of a portion of the Salmonella invA gene. Four fragments of the expected sizes were amplified in a single reaction and visualized following agarose gel electrophoresis in all the samples inoculated with ≤ 1 CFU g−1 or ml−1. Results can be obtained in approximately 30 h. The multiplex PCR is a potentially powerful technique for rapid and sensitive co-detection of both pathogens in foods and other types of samples. Received 28 December 1997/ Accepted in revised form 19 March 1998  相似文献   

12.
Trichuris spp. infect the majority of captive primate species along with an estimated 1049 million people worldwide, making it an important zoonosis [Stephenson, L. S., Holland, C. V., & Cooper, E. S. Parasitology, 121(Suppl.), S73–S95, 2000]. We investigated the efficacy of methods used to evaluate the prevalence of Trichuris spp. in 2 groups (n = 12) of socially housed Abyssinian colobus (Colobus guereza kikuyensis) at Paignton Zoo Environmental Park and the factors that may affect density. We collected individual and group fecal samples over 6 mo and estimated burden (egg counts/g of feces) of Trichuris spp. via the McMaster technique. Shedding was significantly higher in the afternoon than in the morning (matched-pairs t-test: t [5] = −4.46, p < 0.01) and in dominant adult male colobus (Spearman rank: r [5] = −0.94, p < 0.01; age: r [5] = 0.89, p < 0.05). Parasitological studies of zoo-housed primates can be a useful tool to explore factors that may affect burdens of Trichuris spp. in them.  相似文献   

13.
In the region of Murcia (southeast Spain), sweet pepper has been grown as a monoculture in greenhouses for many years. Until 2005, when it was banned, soils were disinfested with methyl bromide (MB) to control pathogens and to prevent soil fatigue effects. The genus Fusarium plays an important role in the microbiological component associated with yield decline in pepper monocultures. In the present study, soils were treated with manure amendments, alone (biofumigation, B) or in combination with solarization (biosolarization, BS), with or without the addition of pepper plant residues. The B and BS treatments were compared with a treatment using MB. The extent of disinfestation was measured from the density of Fusarium spp. isolated from the soil before and after the respective treatments. Three different species were systematically isolated: Fusarium oxysporum, Fusarium solani and Fusarium equiseti. The repeated use of manure amendments with pepper crop residues, without solarization, was unable to decrease the Fusarium spp. density (which increased from 2,047.17 CFU g−1 to 3,157.24 CFU g−1 before and after soil disinfestation, respectively), unlike MB-treated soil (in which the fungi decreased from 481.39 CFU g−1 to 23.98 CFU g−1). However, the effectiveness of the repeated application of BS in diminishing doses (with or without adding plant residues) on Fusarium populations (reductions greater than 72%) was similar to or even greater than the effect of MB.  相似文献   

14.
The relationships of the halocline to both water quality and phytoplankton composition in Lake Obuchi, a shallow brackish lake in northern Japan, were investigated from April 2001 to December 2004. The halocline in this lake became stronger in summer (July–September, mean maximum density gradient 4.3–5.8 ρtm−1) but weaker in spring, fall, and winter (1.9–3.3 ρtm−1). Although the difference in water quality between the upper and lower layers separated by the halocline was high in summer, nutrients (PO43−-P and NH4+-N) were eluted from the bottom sediment as levels of dissolved oxygen decreased in the bottom layer because of the strong stratification caused by the halocline formed over the long term. Moreover, phytoplankton taxa composition also differed between the upper and lower layers in summer, but was similar in other seasons. The dominant phytoplankton taxa in the upper layer in summer were Skeletonema costatum and Cyclotella spp., whereas in the lower layer, Gymnodinium spp. (Dinophyceae) and Chlorophyceae, which prefer eutrophic and low dissolved oxygen conditions, dominated. This suggests that the halocline was related to differentiations in both water quality and ecosystem components between the upper and lower layers in the brackish lake water.  相似文献   

15.
Aims: In the United States, carbadox and copper sulfate are growth promoters commonly used in combination in nursery swine diets. Our aim was to determine how selected dietary additives affect selected bacterial populations and pathogens in nursery swine, and compare to larch extract, which contains potential antibacterial activities. Methods and Results: Piglets were weaned and sorted into one of the four treatments: (i) basal diet without antimicrobials; (ii) basal diet with carbadox + copper sulfate; (iii) basal diet + 1000 ppm larch extract; or (iv) basal diet + 2000 ppm larch extract. Diets were fed for a 4‐week period after weaning. In both trials, the carbadox + copper sulfate group consumed more feed over the 4‐week period relative to the other three diet groups (P < 0·05), but did not gain significantly more weight. Faecal shedding of Salmonella spp. was not affected by dietary supplement in either trial, but faecal shedding of Campylobacter spp. was the lowest for the carbadox + copper sulfate diet. In faecal samples collected at the end of each trial, Lactobacillus spp. cell counts for the basal and larch extract diets were nearly 1·0 log10 g?1 faeces greater (P < 0·05) than the carbadox + copper sulfate group, whereas the coliforms and Escherichia coli were nearly 1·0 log10 g?1 faeces lower (P < 0·05). Conclusions: Compared to basal fed animals, supplementation with carbadox + copper sulfate significantly altered faecal E. coli, coliform bacteria and Lactobacillus spp. Larch extract has no benefit up to 0·2% of diet in regard to pathogen shedding, whereas carbadox + copper sulfate decreased faecal shedding of Campylobacter spp. Significance and Impact of the Study: Current swine management practices in the United States may be beneficial to managing Campylobacter spp. shedding in nursery swine, but also result in significant changes in the resident gastrointestinal microflora.  相似文献   

16.
Fluctuating salinities at different sites on the German salt-polluted rivers Werra and Weser were compared with extracellular ion levels of specimens of Gammarus tigrinus (Sexton; Amphipoda, Crustacea), collected at the same sites. G. tigrinus regulated haemolymph concentrations of inorganic anions (Cl, SO2− 4, PO3− 4) and cations (Na+, K+, Mg2+, Ca2+) during fluctuations of salt pollution in the upper Weser. This capacity to regulate varying levels of salt pollution in the upper Weser, correlated well with the distribution of the brackish amphipods in this river ecosystem. G. tigrinus tolerated periods of Na+ and Cl stress (>380 mmol l−1) without compensating these maxima by regulating extracellular Na+ and Cl. However, during such bursts of Na+ and Cl stress in Werra and Weser, the ability to regulate extracellular [K+] at river water K+ stress of ≥6.0 mmol l−1 may explain why this brackish species has been more successful in these rivers than its competitors like Gammarus pulex. The present investigation demonstrates that the water salinity affects the [NO 3] in the haemolymph of G. tigrinus. With increasing hypo-osmotic stress the animals accumulate increasing amounts of NO 3. A simultaneous increase in stream water [NO 3] causes an additional accumulation of NO 3 in the haemolymph. The high extent of accumulation indicates that active ion transport systems may be involved. The accumulation of NO 3 in the haemolymph has low physiological consequences to G. tigrinus, but when hypo-osmotically stressed under anoxic conditions, nitrite formed by the reduction of nitrate may have an adverse affect on the metabolism of G. tigrinus. Accepted: 4 October 1999  相似文献   

17.
Plasma and urine of toadfish (Opsanus tau) in sea water and 10% sea water were analyzed to assess responses of an aglomerular fish to hypoosmotic challenge. Following transfer to 10% sea water, plasma osmotic pressure decreased slowly from 318 to 241 mmol · kg H2O−1, over a period of 10–15 days. Urine osmotic pressure decreased in parallel from 299 to 207 mmol · kg H2O−1, leaving urine/plasma ratios of osmotic pressure essentially unchanged. In contrast, the volume and composition of urine changed rapidly following transfer to 10% sea water. Urine flow rate increased 110% from 3.0 to 6.3 μl · 100g−1 · h−1 and Na+ excretion increased 346%, while excretion of Mg2− and SO4 2− decreased 81% and 90%, respectively. Excretion rates for Cl were low in seawater toadfish and decreased further in 10% sea water. An unknown sulfur-containing anion, present in the urine of seawater toadfish, contributed significantly to the composition and ionic balance in urine of toadfish in 10% sea water. These results suggest that the inability to produce strongly dilute urine obliges toadfish to lose salt in order to excrete water, in hypoosmotic media. The decrease in plasma osmotic pressure may be both a strategy to reduce osmotic and ionic gradients in dilute media and a consequence of the kidney's inability to excrete water without salt. Accepted: 22 August 1996  相似文献   

18.
The activity on Aspergillus spp. growth and on ochratoxin A production of two novel chromene dimers (3) was evaluated. The results of the bioassays indicate that the chromene dimer 3a inhibited mycelia growth by approximately 50% (EC50) at 140.1 μmol L−1 for A. niger, 384.2 μmol L−1 for A. carbonarius, 69.1 μmol L−1 for A. alliaceus and 559.1 μmol L−1 for A. ochraceus. When applied at concentrations of 2 mmol L−1, 3a totally inhibited the growth of all Aspergillus spp. tested. Furthermore, ochratoxin A production by A. alliaceus was reduced by about 94% with a 200 μmol L−1 solution of this compound. A moderate inhibitory effect was observed for the analogous structure 3b on ochratoxin A production but not in mycelia growth. No inhibition was registered for compounds 2a and 2b, used as synthetic precursors of the dimeric species 3.  相似文献   

19.
A new ion-selective liquid membrane microelectrode, based on the neutral carrier 1,1′-bis(2,3-naphtho-18-crown-6), is described that shows the dependence of EMF on the activity of divalent putrescine cations a Put, with the linear slope s Put = 26 ± 3 mV/decade (mean ± SD, N = 18), in the range 10−4–10−1 M at 25 ± 1 °C. Values of potentiometric putrescine cation selectivity coefficients of logK Pot Put j (mean ± SD, N) are obtained by the separate solution method for the ions K+ (1.0 ± 0.4, 10), Na+ (−1.2 ± 0.4, 8), Ca2+ (−2.3 ± 0.5, 10) and Mg2+ (−2.5 ± 0.5, 7). The microelectrode can be applied for the direct analysis of the activities of free divalent putrescine cations in the range 5 × 10−4 to 10−1 M in an extracellular ionic environment. Established analytical methods, e.g. high performance liquid chromatography, determine the total concentration of the derivatives of free and bound putrescine. Received: 20 December 1998 / Revised version: 7 May 1999 / Accepted: 27 May 1999  相似文献   

20.
Parameters of acid-base and energy status were studied by in vivo 31P-nuclear magnetic resonance spectroscopy in three White Sea Littorina spp. (L.littorea, L. saxatilis and L. obtusata) during prolonged anaerobiosis in freshwater. Intracellular pH decreased significantly, especially during the early period of anaerobiosis, but later the decrease in intracellular pH slowed down considerably, suggesting a capacity for intracellular pH regulation in all three species. There was a trend for intracellular pH to fall most rapidly in the least freshwater-resistant species, L. obtusata, as compared to the most resistant, L. littorea. Non-bicarbonate, non-phosphate buffer values estimated by the homogenate technique were similar in the three studied species (28–37 mmol pH−1 kg−1 wet weight) and did not change during freshwater exposure. The CaCO3 buffer value of the foot tissues was considerably higher (171–218 mmol pH−1 kg−1 wet weight) and decreased significantly during freshwater exposure. The contribution of the multiple tissue buffering systems to intracellular pH regulation in Littorina spp. shifts between different stages of freshwater exposure. Initially, the non-bicarbonate, non-phosphate tissue buffering system seems to be of major importance for metabolic proton buffering at intracellular pH between 7.5 and 7.0. During later stages of anaerobiosis and at lower intracellular pH, the CaCO3 buffer is involved in proton buffering. Decrease in the CaCO3 buffer value during freshwater exposure was in quantitative agreement with the amount of metabolic protons buffered, thus suggesting that CaCO3 tissue stores may serve as a major buffering system during prolonged anaerobiosis in Littorina spp. Accepted: 23 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号