首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interfacial tension has been determined for phosphatidylcholine (PC)–decanoic acid (DA) and PC–decylamine (DE) membranes. PC (lecithin), DA and DE were used in the experiments; the interfacial tension values of the pure components are 1.62 × 10−3, −2.38 × 10−2 and −3.88 × 10−2 N/m (hypothetical values for DA and DE), respectively. The 1:1 complexes were formed during formation of PC–DA and PC–DE membranes. The following parameters describing the complexes were determined: the surface concentrations of the lipid membranes formed from these complexes, A3 - 1 A_{3}^{ - 1} ; the interfacial tensions of such membranes, γ 3; and the stability constants of these complexes, K.  相似文献   

2.
The first forms of cellular life required a source of amphiphilic compounds capable of assembling into stable boundary structures. Membranes composed of fatty acids have been proposed as model systems of primitive membranes, but their bilayer structure is stable only within a narrow pH range and low ionic strength. They are particularly sensitive to aggregating effects of divalent cations (Mg+2, Ca+2, Fe+2) that would be present in Archaean sea water. Here we report that mixtures of alkyl amines and fatty acids form vesicles at strongly basic and acidic pH ranges which are resistant to the effects of divalent cations up to 0.1 M. Vesicles formed by mixtures of decylamine and decanoic acid (1:1 mole ratio) are relatively permeable to pyranine, a fluorescent anionic dye, but permeability could be reduced by adding 2 mol% of a polycyclic aromatic hydrocarbon such as pyrene. Permeability to the dye was also reduced by increasing the chain length of the amphiphiles. For instance, 1:1 mole ratio mixtures of dodecylamine and dodecanoic acid were able to retain pyranine dye during and following gel filtration. We conclude that primitive cell membranes were likely to be composed of mixtures of amphiphilic and hydrophobic molecules that manifested increased stability over pure fatty acid membranes.  相似文献   

3.
Since several anti-cancer drugs interact with cell membrane lipids, the effects of anti-cancer dietary factors on liposomal membranes with different lipid composition were comparatively studied by measuring fluorescence polarization. Fluidity was imparted on both hydrophobic and hydrophilic regions of lipid bilayers by decreasing cholesterol and increasing unsaturated phosphatidylcholine in membranes. At 0.625-10 microM, (-)-epigallocatechin gallate, genistein, apigenin, resveratrol and a reference anti-cancer drug, doxorubicin, rigidified the tumor cell model membranes consisting of 20 mol% cholesterol and 80 mol% phosphatidylcholine with the acyl chain 18:1/16:0 ratio of 1.0, but not daidzein. They were more effective on the membrane core than the membrane surface. Quercetin showed a biphasic effect on the hydrophobic regions of membrane lipid bilayers to rigidify above 5 microM and fluidize below 2.5 microM. In contrast, anti-cancer dietary factors and doxorubicin were not or much less effective in rigidifying the normal cell model membranes consisting of 40 mol% cholesterol and 60 mol% phosphatidylcholine with the acyl chain 18:1/16:0 ratio of 0.5. The membrane-rigidifying effects were greater depending on a decrease of the cholesterol/phosphatidylcholine ratio and an increase of the phosphatidylcholine unsaturation degree. Membrane-active dietary factors and doxorubicin inhibited the growth of mouse myeloma cells at 10-100 microM, while the growth inhibition by membrane-inactive daidzein was relatively weak. Anti-cancer dietary factors appear to act on more fluid membranes like tumor cells as well as doxorubicin to induce rigidification, especially in the hydrocarbon core of membrane lipids, which is determined by the composition of cholesterol and unsaturated phospholipids.  相似文献   

4.
We examined the effect of adsorbed monovalent ions on the surface charge of phosphatidylcholine (PC) – decylamine (DA) liposomal membranes. Surface charge density values were determined from electrophoretic mobility measurements of lipid vesicles performed at various pH levels. The interaction between solution ions and the PC-DA liposomal surface was described by a six component equilibrium model. The previously determined association constants of the -PO(-) and –N(+)(CH3)3 groups of PC with H+, OH-, Na+ and Cl- ions (K A1H, K B1OH, K A1Na, K B1C1) were used to calculate K B2OH, and K B2C1, the association constants of the –N(+)H3 group of DA with OH- and Cl- ions, providing an experimental verification for the proposed model.  相似文献   

5.
The mitochondrial precursor protein, apocytochrome c, binds to model membranes containing negatively charged phospholipids (Rietveld, A., Sijens, R., Verkleij, A.J. and Kruijff, B. (1983) EMBO J. 2, 907-913). In the present paper the effect of apocytochrome c on the lipid distribution in model membranes, consisting of neutral and acidic phospholipids, is examined. Both ESR and fluorescence energy transfer experiments show that the protein preferentially interacts with the negatively charged phospholipid in the mixed model membranes. Semi-quantitative analysis of the fluorescence energy transfer from the single tryptophan in apocytochrome c to the parinaric acid in phosphatidylserine or phosphatidylcholine in mixed bovine brain phosphatidylserine/egg phosphatidylcholine vesicles reveals and average donor-acceptor distance of 22-26 A and 26-30 A for phosphatidylserine and phosphatidylcholine, respectively. In addition, these experiments demonstrate that this preferential interaction does not induce the separation of large domains enriched in complexes of apocytochrome c with negatively charged phospholipids and domains enriched in neutral lipids.  相似文献   

6.
Pneumolysin, a major virulence factor of the human pathogen Streptococcus pneumoniae, is a soluble protein that disrupts cholesterol-containing membranes of cells by forming ring-shaped oligomers. Magic angle spinning and wideline static (31)P NMR have been used in combination with freeze-fracture electron microscopy to investigate the effect of pneumolysin on fully hydrated model membranes containing cholesterol and phosphatidylcholine and dicetyl phosphate (10:10:1 molar ratio). NMR spectra show that the interaction of pneumolysin with cholesterol-containing liposomes results in the formation of a nonbilayer phospholipid phase and vesicle aggregation. The amount of the nonbilayer phase increases with increasing protein concentration. Freeze-fracture electron microscopy indicates the coexistence of aggregated vesicles and free ring-shaped structures in the presence of pneumolysin. On the basis of their size and analysis of the NMR spectra it is concluded that the rings are pneumolysin oligomers (containing 30-50 monomers) complexed with lipid (each with 840-1400 lipids). The lifetime of the phospholipid in either bilayer-associated complexes or free pneumolysin-lipid complexes is > 15 ms. It is further concluded that the effect of pneumolysin on lipid membranes is a complex combination of pore formation within the bilayer, extraction of lipid into free oligomeric complexes, aggregation and fusion of liposomes, and the destabilization of membranes leading to formation of small vesicles.  相似文献   

7.
G P Gorbenko 《Biofizika》1999,44(2):257-262
The method of radiationless energy transfer was used to study the structure of lysozyme complexes with liposomes composed of phosphatidylcholine and diphosphatidylglycerol (4:3, mol:mol). 4-(n-Dimethylaminostyryl)-1-methylpyridinium n-toluenesulfonate, 4-(n-dimethylaminostyryl)-1-hexylpyridinium n-toluenesulfonate, 4-(n-dimethylaminostyryl)-1-dodecylpyridinium n-toluenesulfonate, and 3-metoxybenzanthrone were used as donors, and nile blue and rhodamine 6G, as acceptors. An increase in the surface area of model membranes upon binging of the protein to lipid bilayer was found.  相似文献   

8.
To advance our understanding of the organization of cholesterol within cell membranes, we used digitonin in freeze-fracture investigations of model lipid vesicles and tissues. Cholesterol suspensions or multilamellar liposomes composed of phosphatidylcholine with and without cholesterol were exposed to digitonin. Freeze-fracture replicas of those multilamellar liposomes containing cholesterol displayed either 50--60-nm wide intramembrane corrugations or extramembrane tubular complexes. Comparable intramembrane hemitubular scallops and extra-cellular free tubular complexes were observed in thin sections. Exposure of sperm, erythrocytes (whole and ghosts), and intact tissues (skin, liver, adrenal gland, epididymis) to digitonin produced the same types of intra- and extramembrane complexes or furrows as were formed in liposomes. The plasma membrane of guinea pig serum tail had two unfurrowed regions: the annulus and the zipper. Incubating erythrocyte membranes with digitonin resulted in rapid displacement of cholesterol, accompanied by intramembrane particle clustering and membrane faceting, a feature which we did not see in the intact epithelia studied. In freeze-fractured epithelia, we found that plasma membranes, lysosomes, and some vesicular organelles commonly furrowed, but that mitochondrial membranes and nuclear envelopes were generally spared, correlating well with their known cholesterol content. Finally, plasma membrane corrugations approached but did not impinge on either gap or tight junctions, or on coated vesicles. We conclude that freeze-fracture of membranes exposed to digitonin: (a) reveals distinctive cholesterol- digitonin structural complexes; (b) distinguishes cholesterol-rich and - poor organelle membranes; and (c) demonstrates membrane domains rich or poor in cholesterol.  相似文献   

9.
Ca2+-induced phase separation in phosphatidylserine/phosphatidylethanolamine and phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine model membranes was studied using spin-labeled phosphatidylethanolamine and phosphatidylcholine and compared with that in phosphatidylserine/phosphatidylcholine model membranes studied previously. The phosphatidylethanolamine-containing membranes behaved in qualitatively the same way as did phosphatidylserine/phosphatidylcholine model membranes. There were some quantitative differences between them. The degree of phase separation was higher in the phosphatidylethanolamine-containing membranes. For example, the degree of phase separation in phosphatidylserine/phosphatidylethanolamine membranes containing various mole fractions of phosphatidylserine was 94--100% at 23 degrees C and 84--88% at 40 degrees C, while the corresponding value for phosphatidylserine/phosphatidylcholine membranes was 74--85% at 23 degrees C and 61--79% at 40 degrees C. Ca2+ concentration required for the phase separation was lower for phosphatidylserine/phosphatidylethanolamine than that for phosphatidylserine/phosphatidylcholine membranes; concentration to cause a half-maximal phase separation was 1.4 . 10(-7) M for phosphatidylserine-phosphatidylethanolamine and 1.2 . 10(-6) M for phosphatidylserine/phosphatidylcholine membranes. The phase diagram of phosphatidylserine/phosphatidylethanolamine membranes in the presence of Ca2+ was also qualitatively the same as that of phosphatidylserine/phosphatidylcholine except for the different phase transition temperatures of phosphatidylethanolamine (17 degrees C) and phosphatidylcholine (-15 degrees C). These differences were explained in terms of a greater tendency for phosphatidylethanolamine, compared to phosphatidylcholine, to form its own fluid phase separated from the Ca2+-chelated solid-phase phosphatidylserine domain.  相似文献   

10.
Purified cytochrome P-450(17)alpha,lyase from guinea-pig adrenal microsomes, which catalyzes progesterone 17 alpha-hydroxylation and sequentially C17-C20 bond cleavage of the 17 alpha-hydroxyprogesterone, was successfully incorporated into liposomal membranes composed of only phosphatidylcholine or of a phospholipid mixture of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine at a molar ratio of 5:3:1. Although the purified P-450(17)alpha,lyase was readily converted into P-420 in the detergent-solubilized system without substrates, the P-450 embedded in the liposomal membranes was found to be quite stable without the substrates. Using the P-450(17)alpha,lyase-proteoliposomes, the interaction of steroids with P-450(17)alpha,lyase was studied for progesterone, 17 alpha-hydroxyprogesterone and androstenedione in the liposomal system by optical difference spectroscopy and by equilibrium dialysis. The partition coefficients of steroids between the aqueous phase and the liposomal membranes were determined by the equilibrium dialysis. They were about 1.4-1.6-times higher in phosphatidylcholine liposomes than in the liposomes of the lipid mixture. The dissociation constants of the P-450-steroid complexes were calculated from the apparent dissociation constants using the partition coefficients for the situation where the substrate-binding site faces the lipid phase of the membranes or where it faces the aqueous phase. The dissociation constant in the former case was not affected by the lipid composition. These results suggest that P-450(17)alpha,lyase might interact only with the substrates in the lipid phase of the liposomal membranes.  相似文献   

11.
Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed with phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.  相似文献   

12.
We have examined how a specific enrichment of cultured fibroblasts with various sterols (cholesterol, lathosterol, 7-dehydrocholesterol, allocholesterol and dihydrocholesterol) regulate synthesis de novo of phosphatidylcholine, cholesterol and cholesteryl (or steryl) esters in human skin fibroblasts. When human skin fibroblasts were incubated for 1 h with 130 microM cholesterol/CyD complexes, the mass of cellular free cholesterol increased by 100 nmol.mg-1 protein (from 90 nmol.mg-1 to 190 nmol.mg-1 protein). A similar exposure of cells to different sterol/CyD complexes increased the cell sterol content between 38 and 181 nmol sterol per mg cell protein. In cholesterol-enriched cells, the rate of phosphatidylcholine synthesis was doubled compared to control cells, irrespective of the type of precursor used ([3H]choline, [3H]palmitic acid, or [14C]glycerol). Enrichment of fibroblasts with 7-dehydrocholesterol, allocholesterol, or dihydrocholesterol also upregulated phosphatidylcholine synthesis, whereas cells enriched with lathosterol failed to upregulate their phosphatidylcholine synthesis. The activity of membrane-bound CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme, was increased by 47 +/- 4% in cholesterol-enriched cells whereas its activity was unchanged in lathosterol-enriched cells. Sterol enrichment with all tested sterols (including lathosterol) down-regulated acetate-incorporation into cholesterol, and upregulated sterol esterification in the sterol-enriched fibroblasts. Using 31P-NMR to measure the lamellar-to-hexagonal (Lalpha-HII) phase transition in multilamellar lipid dispersions, lathosterol-containing membranes underwent their transition at significantly higher temperatures compared to membranes containing any of the other sterols. In a system with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine and either cholesterol or lathosterol (70:30 mol/mol), differential scanning calorimetry also revealed that the Lalpha-HII-transition occurred at a higher temperature with lathosterol compared to either cholesterol, allocholesterol, or dihydrocholesterol. These findings together suggest that there may exist a correlation between the propensity of a sterol to stabilize the Lalpha-HII-transition and its capacity to upregulate the activity of CTP:phosphocholine cytidylyltransferase in cells.  相似文献   

13.
During senescence of cut carnation flowers, there is extensive breakdown of microsomal phospholipid. This is attributable, at least in part, to lipolytic activity associated directly with the microsomal membranes. Evidence indicating that one or more of the lipid-degrading enzymes in these membranes preferentially degrade phospholipid molecular species containing two diunsaturated acyl chains or at least one polyunsaturated acyl chain has been obtained by using radiolabeled phosphatidylcholine substrates. 16:0*/16:0*, 16:0/18:2*, and 18:1*/18:1* phosphatidylcholine were degraded only minimally over a 3 hour period by microsomes isolated from senescing flowers. By contrast, [U-14C]phosphatidylcholine, which comprises various molecular species including those containing polyunsaturated acyl chains, and 18:0/20:4* phosphatidylcholine were extensively degraded. Under identical conditions, but in the absence of added radiolabeled substrate, endogenous 18:2/18:2, 18:1/18:3, and 18:2/18:3 phosphatidylcholine were selectively depleted from the membranes. During natural senescence of the flowers, there was a sharp decline in microsomal 16:0/18:1 and 18:1/18:2 phosphatidylcholine, whereas molecular species containing two diunsaturated acyl chains or at least one polyunsaturated acyl chain remained unchanged or decreased only slightly. The data have been interpreted as indicating that provision of particular molecular species susceptible to lipase attack is a prerequisite to phospholipid catabolism in senescing membranes.  相似文献   

14.
There is good evidence that high density lipoprotein (HDL) interacts with high affinity sites present on hepatocytes. The precise nature of the ligand recognized by putative HDL receptors remains controversial, although there is a consensus that apolipoprotein AI (apoAI) is involved. This suggestion would be strengthened if a biologically active site demonstrating a high affinity for the receptor could be isolated. Cyanogen bromide fragments (CF) of apoAI (CF1-CF4) were complexed with phospholipid, and their ability to associate with the receptor was compared in various binding studies. Careful analysis of the concentration-dependent association of 125I-labeled dimyristoyl phosphatidylcholine (DMPC) recombinants to rat liver plasma membranes revealed high and low affinity binding components. As all DMPC recombinants displayed the low affinity binding component, it was postulated that this interaction was independent of the protein present in the particle and may well represent a lipid-lipid or lipid-protein association with the membranes. Only 125I-labeled CF4.DMPC displayed a high affinity binding component with similar Kd and Bmax (8 x 10(-9) M, 1.6 x 10(-12) mol/mg plasma membrane protein) to that of 125I-labeled AI.DMPC (7 x 10(-9), 1.4 x 10(-12) mol/mg plasma membrane protein). Similarly, egg yolk phosphatidylcholine complexes containing CF4 (CF4.egg PC) showed higher affinity binding than CF1-egg yolk phosphatidylcholine complexes confirming the results obtained with DMPC complexes. Furthermore, ligand blotting studies showed that only 125I-labeled CF4.DMPC associated specifically with HB1 and HB2, two HDL binding proteins recently identified in rat liver plasma membranes. We conclude that a region within the carboxyl-terminus of apoAI is responsible for the interaction with putative HDL receptors present in rat liver plasma membranes.  相似文献   

15.
《BBA》1985,808(3):428-436
Polarized fluorescence spectra and fluorescence polarization ratios were compared in aligned isolated intact thylakoids and in granal and stromal membranes, without and after linolenic acid treatment at liquid N2 temperature in squeezed polyacrylamide gel. Separation of granal membranes from stromal membranes allowed an improved alignment of the membranes as compared to isolated intact thylakoids. As a result, a higher anisotropy of fluorescence was measured with fragments than with chloroplasts. Incorporation of linolenic acid into the membranes affected the energy migration between the complexes, and induced changes in the orientation of the complexes within the membranes, as shown by a reduced fluorescence intensity and decreasing values (but still larger than 1) of fluorescence polarization ratios at longer wavelengths. In order to interpret these changes in the fluorescence polarization ratios, model calculations were carried out, the following parameters being taken into account: the direction of the absorption and emission dipoles in the complex, the orientation of the complex in the membrane, and the fluctuation of the orientation. Calculated values of the fluorescence polarization ratio changed in a similar manner as those observed experimentally. The character of the changes of the fluorescence polarization ratio suggests a picture of the orientation of the complexes within the membranes.  相似文献   

16.
A procedure was developed for isolation of macronuclei and nuclear membranes from the ciliated protozoan Tetrahymena pyriformis E, and the lipid composition of the isolated nuclear membranes was determined.This method involves cell lysis with octanol, separation of the nuclear membrane with 0.2 M phosphate–1M NaCl and purification on a discontinuous sucrose gradient. By phase-contrast and electron microscopic examinaton, our preparations were pure and preserved the typical nuclear membrane morphology: inner and outer nuclear membranes, and nuclear pore complexes. As for lipid distribution, the three major phospholipids in the membranes were phosphatidylcholine (31.0%), phosphatidylethanolamine (26.1%) and 2-aminoethylphosphonolipids (23.3%) and the molar ratio of a sterol-like lipid, tetrahymanol to phospholipid phosphorus was 0.036. These results were compared to other membrane fractions of Tetrahymena.  相似文献   

17.
Reconstituted vesicles of hemagglutinin glycoproteins into egg yolk phosphatidylcholine/spin-labeled phosphatidylcholine/cholesterol (molar ratio 1.6:0.4:1) were prepared by dialysis. Preparations at appropriate protein-to-lipid ratios (1:44 and 1:105 mol/mol) contained vesicles with a diameter of 100-300 nm and a high density of spikes on the surface. These vesicles showed low pH-induced membrane fusion activity. At pH 5.2 and 37 degrees C, fusion with erythrocyte membranes took place very rapidly within 1-2 min and reached a plateau at 63-66% fusion. The fusion was negligibly small at neutral pH and was induced to occur at pH values lower than 6.0. The reconstituted vesicles caused hemolysis and fusion of human erythrocyte cells in the same pH range as that of the fusion with erythrocyte membranes. The low pH-induced fusion activity of the reconstituted vesicles is essentially the same as that of the parent virus. These vesicles can be used to deliver some reagents or drugs into target cell cytoplasm via fusion at lysosomes.  相似文献   

18.
Human peripheral-type cannabinoid receptor (CB2) was expressed in Escherichia coli as a fusion with the maltose-binding protein, thioredoxin, and a deca-histidine tag. Functional activity and structural integrity of the receptor in bacterial protoplast membranes was confirmed by extensive binding studies with a variety of natural and synthetic cannabinoid ligands. E. coli membranes expressing CB2 also activated cognate G-proteins in an in vitro coupled assay. Detergent-solubilized receptor was purified to 80%-90% homogeneity by affinity chromatography followed by ion-exchange chromatography. By high-resolution NMR on the receptor in DPC micelles, it was determined that purified CB2 forms 1:1 complexes with the ligands CP-55,940 and anandamide. The receptor was successfully reconstituted into phosphatidylcholine bilayers and the membranes were deposited into a porous substrate as tubular lipid bilayers for structural studies by NMR and scattering techniques.  相似文献   

19.
PDC-109, the major heparin-binding protein of bull seminal plasma, binds specifically to sperm choline lipids at ejaculation and mediates capacitation by stimulating cholesterol and phospholipid efflux. We carried out a biophysical study to investigate the membrane perturbation effect caused by PDC-109. Binding of PDC-109 to phosphatidylcholine model membranes was maximal at a 12:1 phosphatidylcholine to protein molar ratio. The process was independent of the membrane structure and involved a slight conformational change of the protein, compatible with an increased exposure to the solvent. PDC-109 binding to dimyristoylphosphatidylcholine prevented lipid molecules from participating in the gel-to-liquid phase transition, due to enhancement of both acyl chain disorder and interfacial hydration. Visualization of the lipid-protein complexes by electron microscopy showed surface irregularities and the presence of 10-nm particles. Permeability assays confirmed the PDC-109-induced disruption of the vesicles. This effect was not modified by heparin. However, presence of cholesterol inhibited the process in a concentration-dependent manner.  相似文献   

20.
The transfer of phospholipid molecules between biological and synthetic membranes is facilitated by the presence of soluble catalytic proteins, such as those isolated from bovine brain which interacts with phosphatidylinositol and phosphatidylcholine and from bovine liver which is specific for phosphatidylcholine. A series of tertiary amine local anesthetics decreases the rates of protein-catalyzed phospholipid transfer. The potency of inhibition is dibucaine>tetracaine>lidocaine>procaine, an order which is compared with and identical to those for a wide variety of anesthetic-dependent membrane phenomena. Half-maximal inhibition of phosphatidylinositol transfer by dibucaine occurs at a concentration of 0.18 mM, significantly lower than the concentration of 1.9 mM required for half-maximal inhibition of phosphatidylcholine transfer activity of the brain protein. Comparable inhibition of liver protein phosphatidylcholine transfer activity is observed at 1.6 mM dibucaine. For activity measurements performed at different pH, dibucaine is more potent at the lower pH values which favor the equilibrium toward the charged molecular species. With membranes containing increasing molar proportions of phosphatidate, dibucaine is increasingly more potent. No effect of Ca2+ on the control transfer activity or the inhibitory action of dibucaine is noted. These results are discussed in terms of the formation of specific phosphatidylinositol or phosphatidylcholine complexes with the amphiphilic anesthetics in the membrane bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号