首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total and specific activity of cathepsin D (EC. 3.4.23.5) were measured in rat liver and brain from 1 to 98 days of age. The activity of cathepsin D in the liver of adult and newborn rats was the same while in the rat brain it was higher in adult than in newborn rats. In the liver maximum specific activity of cathepsin D occurred on the 10th postnatal day and minimum on the fourth day of age. In the brain maximum specific activity of the enzyme occurred on the 14th postnatal day. Total activity of cathepsin D increased after birth in rat liver and brain. These results are discussed in relation to the functional role of cathepsin D in the rat liver and the brain.  相似文献   

2.
Two lysosomal enzymes, cathepsin D and acid phosphatase, were detected in significant amounts in the lysosome-containing subcellular fractions of rat parotid tissue and found to have dissimilar distributions in these fractions. The total levels of these enzymes were measured at various times throughout a complete secretory cycle induced synchronously by fasting rats overnight and administering isoproterenol at time zero. The results showed a 30% increase in cathepsin D activity in the glands by 10 h post-stimulation, and a 20% decrease in acid phosphatase activity 7 h after stimulation. These results suggest that there are cyclic changes in lysosomal enzymes during the secretory cycle of this gland, but that these changes are complex ones and cannot be related to specific cellular processes at this time.  相似文献   

3.
Isolated non-parenchymal cells from rat liver were separated by centrifugal elutriation into two fractions consisting of structurally intact Kupffer and endothelial cells with purities of 91 and 95%, respectively. Purified Kupffer and endothelial cells showed nearly equal specific activities for the lysosomal enzyme acid phosphatase, whereas the specific activity of cathepsin D was about 3 times higher in Kupffer cells. It was calculated that a significant amount of the cathepsin D activity in the liver is present in the Kupffer cells.  相似文献   

4.
The localization of cathepsin D-like acid proteinase in the rat stomach and other tissues was studied, and its biochemical properties were compared with those of rat gastric cathepsin D (EC 3.4.23.5). Cathepsin D-like acid proteinase existed overwhelmingly in the mucosal layer and was hardly detected in the gastric juice. Its subcellular distribution profile was very similar to that of acid phosphatase, but not to that of pepsinogen. This proteinase-like enzyme activity was also found in rat splenic extract. These results strongly suggest that the proteinase is a lysosomal enzyme. In addition, cathepsin D-like acid proteinase demonstrated an in vitro transition of molecular species during storage at -30 degrees C. Although this molecular change was distinctive in ion-exchange column chromatography and susceptibility to some enzyme inhibitors, it was not accompanied by a significant decrease in molecular weight. To compare cathepsin D-like acid proteinase with ordinary cathepsin D, gastric cathepsin D was newly purified to apparent homogeneity in polyacrylamide gel electrophoresis. Its biochemical properties demonstrate that this is a true cathepsin D in rat gastric mucosa. Moreover, this cathepsin D activity was not abolished by treatment with antiserum specific to cathepsin D-like acid proteinase or pepsinogen. From these results, we can conclude that the proteinase is a lysosomal acid proteinase different from newly purified gastric cathepsin D.  相似文献   

5.
The lysosomal proteolytic capacity of mouse brown adipose tissue (BAT) and its role during fasting were evaluated. The specific activities of acid phosphatase and cathepsins B, D, H, and L were measured in BAT of mice acclimated at 33, 21, and 4 degrees C and in BAT undergoing different rates of protein loss during a 24- to 48-h fast. The specific activities of lysosomal proteases in BAT did not vary with the acclimation status of the animals. Mice acclimated at 33 degrees C showed no significant atrophy of BAT after a fast. In mice kept at 21 degrees C, protein loss from BAT was observed after a fast without change in tissue DNA content. Protein loss from BAT was partially reduced by injection of the acidotropic agent chloroquine. Furthermore, tyrosine release from BAT during fasting was also reduced by injections of chloroquine or leupeptin, a thiol-protease inhibitor. Tyrosine release from BAT was maximum within 24 h and returned to prefast values by 36 h, suggesting rapid activation followed by inhibition of the tissue proteolytic activity. However, there was no change in acid protease specific activities, suggesting that these enzymes were not limiting for protein degradation. When cold-acclimated mice were fasted at 21 degrees C, BAT protein loss was markedly enhanced and increases in cathepsin D and L activities were observed, but there was no change in cathepsin B and H and acid phosphatase specific activities. These results indicate that BAT contains an important lysosomal proteolytic pathway that is involved in the rapid reduction of the tissue thermogenic capacity during a fast.  相似文献   

6.
We have previously reported that cathepsin L mRNA is present in unfertilized eggs of Sarcophaga peregrina (flesh fly) as a maternal mRNA, which suggests that cathepsin L is required for embryogenesis. Now we have identified an egg protein, with a molecular mass of 100 kDa, that is extremely susceptible to cathepsin L digestion and which disappears rapidly as the embryos develop. We purified this protein to homogeneity, cloned its cDNA, and found that it contained a consensus sequence for the active site of tyrosine phosphatase. In fact this protein showed tyrosine phosphatase activity, indicating that it is a novel tyrosine phosphatase. The expression and subsequent disappearance of this protein, which we have named egg-derived tyrosine phosphatase (EDTP), may be indispensable for embryogenesis of Sarcophaga.  相似文献   

7.
1. The effects of potent protease inhibitors in vitro (leupeptin, pepstatin and E-64[N-[L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl]agmatine]) on intracellular cathepsin B (EC 3.4.22.1), hemoglobin (Hb)-hydrolase and acid phosphatase (EC 3.1.3.2) from cultured B16 melanoma variants (B16-F1, F10 and BL6) were studied. 2. E-64 induced all the cultured B16 melanoma variants to decrease the activity of intracellular cathepsin B but did not have this effect with Hb-hydrolase or acid phosphatase. Furthermore, E-64 decreased the activity of cathepsin B in both the lysosomal and cytosol fractions. 3. Leupeptin induced all the cultured B16 melanoma variants to increase the activities of intracellular cathepsin B and Hb-hydrolase but not that of acid phosphatase. An increase in the level of cathepsin B activity was most significant in B16-BL6 followed by F10 and then F1 variants. 4. Leupeptin induced all the cultured B16 melanoma variants to increase the cathepsin B activity in the lysosomal fraction. Our data differed from the results of Tanaka et al. (1981) in that leupeptin induced rat cultured hepatocytes to inhibit the activity of intracellular cathepsin B and increase the Hb-hydrolase activity, especially in the cytosol fraction.  相似文献   

8.
Inorganic polyphosphate (poly P) is a polymer of phosphate residues that has been shown to act as modulator of some vertebrate cathepsins. In the egg yolk granules of Rhodnius prolixus, a cathepsin D is the main protease involved in yolk mobilization and is dependent on an activation by acid phosphatases. In this study, we showed a possible role of poly P stored inside yolk granules on the inhibition of cathepsin D and arrest of yolk mobilization during early embryogenesis of these insects. Enzymatic assays detected poly P stores inside the eggs of R. prolixus. We observed that micromolar poly P concentrations inhibited cathepsin D proteolytic activity using both synthetic peptides and homogenates of egg yolk as substrates. Poly P was a substrate for Rhodnius acid phosphatase and also a strong competitive inhibitor of a pNPPase activity. Fusion events have been suggested as important steps towards acid phosphatase transport to yolk granules. We observed that poly P levels in those compartments were reduced after in vitro fusion assays and that the remaining poly P did not have the same cathepsin D inhibition activity after fusion. Our results are consistent with the hypothesis that poly P is a cathepsin D inhibitor and a substrate for acid phosphatase inside yolk granules. It is possible that, once activated, acid phosphatase might degrade poly P, allowing cathepsin D to initiate yolk proteolysis. We, therefore, suggest that degradation of poly P might represent a new step toward yolk mobilization during embryogenesis of R. prolixus. J. Cell. Physiol. 222: 606–611, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The influence of cardioselective beta-blockers, practolol and atenolol, on acid phosphatase, acid deoxyribonuclease, cathepsin D, beta-glucosidase and beta-galactosidase activities was studied in homogenates of intact rat ventricular myocardium. In the presence of drugs (1 x 10(-9)-1 x 10(-5) M) the activities of acid phosphatase, cathepsin D, beta-glucosidase and beta-galactosidase tended to diminish but the activity of acid deoxyribonuclease tended to increase. Some differences in the influence of drugs on the enzyme activities were removed by prolongation of preincubation of homogenates with drugs. It is supposed that the mechanism of influence of beta-blockers on lysosomes of the intact rat ventricular myocardium in conditions of this study includes the specific drug binding to beta-adrenergic receptors situated on lysosomes.  相似文献   

10.
The enzymatic activity of two lysosomal enzymes, acid phosphatase and cathepsin D, was determined in fetus and during post-natal development of the rat gastrocnemius muscle in comparison to the histological differentiation of this muscle. The specific activity of cathepsin D and acid phosphatase was 7 and 2.5 fold higher in the muscle during development until 20 days after birth, than that of mature muscle, respectively. A trend of gradual decrease in the activity of these enzymes was observed concomitantly with the differentiation and maturation of the muscle from mononucleated cells in the fetus to myotubes formation at day 1 after birth, followed by the formation of "young" and then striated myofibers in 10- and 20-day old neonates, respectively. However, no correlation could be found between the lysosomal enzyme activity and the developmental stages of the muscle until 20 days after birth. It is suggested that the elevated activity of lysosomal acid hydrolases may be associated with late developmental processes from young to mature myofibers in normal skeletal muscle and not only in various pathological conditions.  相似文献   

11.
《Insect Biochemistry》1991,21(5):457-465
Musca domestica larval midgut display in cells and luminal contents a proteolytic activity with a pH optimum of 3.0–3.5. This activity is abolished by pepstatin and is insensitive to soybean trypsin inhibitor and to sulfhydryl proteinase inhibitors. The acid proteinase occurs in multiple forms with Mr values in the range 40,000–80,000 and with pI values of about 5.5. The proteinase inactivates at 60°C according to apparent first-order kinetics and Lineweaver-Burk plots of its activity against albumin concentration are rectilinear, suggesting that the multiple forms have similar properties. The proteinase reacts slowly with diazoacetylnorleucine plus CuSO4, is stable in alkaline media, is inhibited by dithiothreitol, hydrolyses hemoglobin better than albumin and is virtually not active upon synthetic substrates for pepsin. These properties are similar to those of cathepsin D. The specific activity of the acid proteinase determined by titration with pepstatin is 680 units/mg of proteinase and the KD of the pepstatin-proteinase complex is 1.5 nM at 30°C. The acid proteinase occurs mainly in midgut subcellular fractions characterized by a high specific activity of molybdate-inhibited acid phosphatase and a large number of secretory-like vesicles. It is proposed that the M. domestica midgut acid proteinase is a cathepsin D-like proteinase evolved to function in luminal contents. The lack of ATP activation of the midgut enzyme supports this hypothesis, since ATP is thought to regulate cathepsin D-proteolysis inside lysosomes.  相似文献   

12.
Acid phosphatase, alkaline phosphatase and acid cathepsin activity increased in the subcellular fraction of the grey matter of dog brain in proportion to the duration of compression ischemia, particularly in the postmitochondrial supernatant. An increase in the alkaline phosphatase and of the acid cathepsin activity in the postmitochondrial supernatant was also observed at the period of clinical death caused by blood loss and preceded by hypotension of different duration and various levels of arterial pressure. Comparison of the above data indicated a common mechanism of proteolysis activation in the nervous tissue in the terminal states under study.  相似文献   

13.
Proteolytic activity in the digestive system of the pistachio green stink bug, Brachynema germari, was investigated. The maximum total proteolytic activity in the midgut extract was observed at pH 5, suggesting the presence of cysteine proteases. Hydrolyzing the specific substrates for cysteine proteases revealed the presence of cathepsin B and cathepsin L activities in the midgut extract. The presence of cysteine proteases was confirmed by their noticeable inhibition and activation due to specific inhibitors and activators, respectively. The significant inhibition of chymotryptic activity by the inhibitors showed the presence of chymotrypsin in the midgut. No considerable tryptic activity was observed in the midgut extract. There was no detectable total proteolytic activity in the salivary gland extract. Tryptic activity of the salivary gland extract was also inhibited by the specific inhibitors. The substrates for cysteine proteases were also slightly hydrolyzed by the salivary gland extract. Zymogram analysis showed at least one distinct band due to cysteine protease activity in the midgut extract, and the cysteine protease inhibitor caused almost complete disappearance of the band. Cathepsin B and L activities were mainly detected in midgut divisions m1 and m3, respectively, and maximum chymotrypsin and trypsin activities were observed in m3. In general, the results revealed the significant presence of cathepsin B, cathepsin L, and chymotrypsin proteases in the midgut extract. The major proteolytic activity in the salivary glands seems to be conducted by trypsin-like proteases.  相似文献   

14.
Twelve acid hydrolases, 4 near-neutral hydrolases, and alkaline phosphatase were demonstrated in 0.34 M sucrose homogenates of Trypanosoma cruzi strain Y: p-nitrophenylphosphatase and alpha-naphthylphosphatase, with optimum pH at approximately 6.0; alpha=ga;actpsodase. beta=ga;actpsodase. beta=g;icpsodase, N-acetyl-beta-glucosaminidase, cathepsin A and peptidase I and III, with optimum pH between 5.0 and 6.0; and arylsulfatase, cathepsin D, alpha-arabinase and alpha-mannosidase with optimum pH at approximately 4.0. alpha-Glucosidase, glucose-6-phosphatase and peptidase II had optimum pH at approximately 7.0. beta-Glycerophosphatase had a broad pH-activity curve from 4,0 to 7.4, with maximum activity at pH 7.0. The main kinetic characteristics of these enzymes and their quantitative assay methods were studied. No activity was detected for alpha-fucosidase, beta-xylosidase, beta-glucuronidase, elaidate esterase, acid lipase, and alkaline phosphodiesterase.  相似文献   

15.
The yolk platelets from Rhodnius prolixus, a blood-sucking bug, are composed mostly of vitellin and here are shown to contain at least two hydrolytic enzymes, a phosphatase and a cathepsin D-like proteinase. Both the proteinase and the phosphatase have an acid pH optimum. No hydrolytic activity was observed under alkaline or neutral conditions. Among several proteinase inhibitors tested, only pepstatin could abolish vitellin breakdown in vitro. The proteinase appears to be bound to the yolk platelet membranes. The phosphatase activity, using p-nitrophenyl phosphate as substrate, was enhanced after disruption of the platelet membrane by Triton X-100. This activity could be inhibited by tartrate but not by p-cloromercuribenzoate.  相似文献   

16.
An insoluble preparation of rat liver cathepsin D was obtained by coupling the enzyme to Enzacryl Polyacetal (EPA-cathepsin) and to CNBr-activated Sepharose 4B. EPA-cathepsin was active toward the synthetic hexapeptides (Gly-Phe-Leu)2 and did not split hemoglobin. The optimum pH of splitting was displaced upward by 1.5 units to pH 5.0. The enzyme exhibited maximum activity at 60 degrees C. No appreciable loss of activity was seen on storage of the enzyme for 4 months or after repeated use of the preparations. Coupling of rat liver cathepsin D to activated Sepharose gave preparations active towards both protein and synthetic substrates. The preparations were totally inactive in acid media and exhibited maximum activity at pH 7.0, that is, under physiological conditions. Optimum temperature was 65 degrees. The specific activity of the preparations (pH 7.0, 65 degrees) was 60-110 percent that of the free enzyme in acid media. Proteolytic activity of the Sepharose-coupled cathepsin D was not inhibited by pepstatin, whereas that of the free enzyme was fully inhibited by this reagent. A sarcoma cathepsin, similar in some of its properties to the rat liver enzyme, was also coupled to CNBr-activated Sepharose 4B. The preparation split protein substrates at pH 7.0 and possessed enhanced thermostability. The enzymes fixed on Sepharose showed increased stability.  相似文献   

17.
Cathepsin L [EC 3.4.22.15] is secreted via lysosomal exocytosis by several types of cancer cells, including prostate and breast cancer cells. We previously reported that human cultured fibrosarcoma (HT 1080) cells secrete cathepsin L into the medium; this secreted cathepsin is 10-times more active than intracellular cathepsin. This increased activity was attributed to the presence of a 32-kDa cathepsin L in the medium. The aim of this study was to examine how this active 32-kDa cathepsin L is secreted into the medium. To this end, we compared the secreted active 32-kDa cathepsin L with lysosomal cathepsin L by using a novel gelatin zymography technique that employs leupeptin. We also examined the glycosylation and phosphorylation status of the proteins by using the enzymes endoglycosidase H [EC 3.2.1.96] and alkaline phosphatase [EC 3.1.3.1]. Strong active bands corresponding to the 32-kDa and 34-kDa cathepsin L forms were detected in the medium and lysosomes, respectively. The cell extract exhibited strong active bands for both forms. Moreover, both forms were adsorbed onto a concanavalin A-agarose column. The core protein domain of both forms had the same molecular mass of 30 kDa. The 32-kDa cathepsin L was phosphorylated, while the 34-kDa lysosomal form was dephosphorylated, perhaps because of the lysosomal marker enzyme, acid phosphatase. These results suggest that the active 32-kDa form does not enter the lysosomes. In conclusion, our results indicate that the active 32-kDa cathepsin L is secreted directly from the HT 1080 cells and not via lysosomal exocytosis.  相似文献   

18.
Cartilage cathepsin D, cathepsin B and acid phosphatase activities decreased with maturation of Sprague-Dawley rats. Although this phenomenon may largely be due to an age-dependent decrease in cell concentration at young ages (1–8 weeks), in older (8–25 weeks) rats there appeared to be a decrease in enzyme activity per cell. The dimunition in cartilage cathepsin D activity coincided with an apparent decrease in its concentration. In addition, the inverse correlation between rat age and cartilage lysosomal enzyme activities was, at least in part, tissue specific as the pattern of liver lysosomal enzyme activities was quite different from that noted with cartilage. Interestingly, hypophysectomy greatly diminished age-related modulations in lysosomal enzyme activities suggesting that one or more pituitary hormones may be involved in the mechanism of this age-dependent phenomenon. In addition, cartilage growth rate appeared to be correlated with the level of cartilage lysosomal enzyme activities, indicating that these enzymes may be related to the biochemical mechanism of cartilage growth and development.  相似文献   

19.
Twelve acid hydrolases, 4 near-neutral hydrolases and alkaline phosphatase were demonstrated in 0.34 M sucrose homogenates of Trypanosoma cruzi strain Y: p-nitrophenylphosphatase and α-naphthylphosphatase, with optimum pH at ? 6.0; α-galactosidase, β-galactosidase, β-glucosidase, N-acetyl-β-glucosaminidase, cathepsin A and peptidase I and III, with optimum pH between 5.0 and 6.0: and arylsulfatase cathepsin D, α-arabinase and α-mannosidase with optimum pH at ? 4.0 α-Glucosidase, gluccse-6-phosphatase and peptidase II had optimum pH at ? 7.0. β-Glycerophcsphatase had a broad pH-activity curve from 4.0 to 7.4, with maximum activity at pH 7.0. The main kinetic characteristics of these enzymes and their quantitative assay methods were studied. No activity was detected for α-fucosidase, β-xylosidase, β-glucuronidase, elaidate esterase. acid lipase, and alkaline phospho-diesterase.  相似文献   

20.
The pH versus proteinase activity curve (casein or hemoglobin plus urea substrate) for homogenates of unfertilized Lytechinus eggs reveals two regions of maximum activity: one between pH 3.5 and 4.3, and another of far greater magnitude from pH 8.0 to 11.0. The two classes of proteinases can be separated on a sucrose density gradient. Both the acid and alkaline proteinases in homogenates prepared in isotonic monovalent salt solutions are remarkably stable at pH 7.4 and 0°C. Using synthetic peptide substrates, an enzyme with the specific esterase activity of chymotrypsin was demonstrated; this enzyme accounts for the major part of the proteinase activity at alkaline pH. In addition, an enzyme with specific esterase activity of trypsin was shown to be present, but of low activity. The proteinase activity at acid pH is largely due to an enzyme resembling cathepsin D. The data also suggest the presence of cathepsin B and cathepsin IV (or catheptic carboxypeptidase). When eggs are homogenized in isotonic NaCl plus KCl at pH 7.4, 0.02 M tris buffer at 0°C, all of the alkaline proteinase, and 85–90% of the acid proteinase activity is sedimented at 10,000 g. The presence of any proteinase activity in the supernatant phase represents an artifact of the preparative procedures used. The granules which possess the proteinase activity are contained entirely in the yolk fractions; and the acid proteinase is contained in a population of granules which sediment more readily than those which contain the alkaline proteinase. The acid proteinase resembles the lysosomal acid hydrolases in that it is readily released from the particulates; in contrast, the alkaline proteinase is bound relatively firmly. In contradistinction to reports in the literature, no changes in proteinase activity nor intracellular distribution could be detected following fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号