首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
3.
4.
5.
cDNA clones encoding two novel human KRAB zinc finger proteins, HKr18 and HKr19, were isolated from a human testis cDNA library. Their corresponding genes were later identified in sequences originating from chromosomes 19 and 7, respectively. On the basis of the collected information from gene and cDNA sequences, Hkr18 was found to be a protein of 94 kDa with 20 zinc finger motifs in its C terminus. The HKr19 is a smaller protein, with a molecular weight of 56 kDa containing 11 zinc finger motifs. Both HKr18 and HKr19 contained a KRAB A as well as a KRAB B domain in their N termini. Northern blot analysis showed expression of HKr18 in all human tissues tested, indicating a ubiquitous expression pattern. In contrast, HKr19 showed a more restricted tissue distribution, with detectable expression primarily in testis and fetal tissues. The HKr19 protein is a member of the large ZNF91 subfamily of KRAB zinc finger genes. A PCR-based analysis of the expression of HKr19 and other closely related genes showed that lymphoid, myeloid, and nonhematopoietic cells expressed different sets of these genes. This latter finding indicates that some members of the ZNF91 family may be involved in regulating lineage commitment during hematopoietic development. Transfection of various parts of HKr19 into human embryonic kidney cells (HEK 293 cells) showed that the entire protein and its zinc finger region were toxic to these cells when expressed at high levels. In contrast, the KRAB domain and the linker region seemed to be well tolerated.  相似文献   

6.
7.
8.
袁力赟  赵中明  丁国徽 《生物信息学》2009,7(3):202-206,211
KRAB锌指基因是哺乳动物中最大的转录调控因子家族,它的多数成员在基因组上成簇分布,具有五种不同的亚家族,在功能行使上承担着不同的作用。本文通过对人类、黑猩猩、小鼠、大鼠和狗五种哺乳动物全蛋白质组序列及mRNA组织表达谱分析,验证了C2H2锌指结构在单个KRAB蛋白质中出现的数目多于一般锌指蛋白质;KRAB功能域在各物种中分布显著不同且与分化时间不成正比,这表明KRAB相关功能域多样性在灵长类进化过程中潜在的适应性进化。同时,提出KRAB亚家族进化的路线:即KRAB—Aa为起始家族,Ba由Aa直接演变形成,而Ca,blonga和XRCC-Z种亚型可能经过Ba或直接从Aa演变形成;此外,锌指结构在单个蛋白质中出现个数伴随KRAB功能域自身的进化路线逐渐递增,反映了KRAB功能域在形成新转录调控因子方面的积极作用。  相似文献   

9.
10.
11.
Zinc finger genes comprise a large and diverse gene family. Based on their individual finger structures and spacing, zinc finger proteins are further divided into different families according to their specific molecular functions. Genes in the CCCH family encode zinc finger proteins containing a motif with three cysteines and one histidine. They play important roles in plant growth and development, and in response to biotic and abiotic stresses. However, the limited analysis of the genome sequence has meant that there is no detailed information concerning the CCCH zinc finger family in tomato (Solanum lycopersicum). Here, we identified 80 CCCH zinc finger protein genes in the tomato genome. A complete overview of this gene family in tomato was presented, including the chromosome locations, gene duplications, phylogeny, gene structures and protein motifs. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. These results revealed that, with the exception of four genes, the 80 CCCH genes are distributed over all 12 chromosomes with different densities, and include six segmental duplication events. The CCCH family in tomato could be divided into 12 groups based on their different CCCH motifs and into eight subfamilies by phylogenetic analysis. Analysis showed that almost all CCCH genes contain putative stress-responsive cis-elements in their promoter regions. Nine CCCH genes chosen for further quantitative real-time PCR analysis showed differential expression patterns in three representative tomato tissues. In addition, their expression levels indicated that these genes are mostly involved in the response to mannitol, heat, salicylic acid, ethylene or methyl jasmonate treatments. To the best of our knowledge, this is the first report of a genome-wide analysis of the tomato CCCH zinc finger family. Our data provided valuable information on tomato CCCH proteins and form a foundation for future studies of these proteins, especially for those members that may play important roles in stress responses.  相似文献   

12.
The GATA family of transcription factors in Arabidopsis and rice   总被引:17,自引:0,他引:17       下载免费PDF全文
  相似文献   

13.
14.
15.
16.
A cluster of Krüppel type zinc finger genes of the KRAB subclass has recently been localized on human chromosome 19p12-p13.1. We now report that ZNF117 (HPF9), a closely related zinc finger gene of this KRAB subfamily, has been assigned to a distinct locus in the human genome: chromosome band 7q11.2.  相似文献   

17.
18.
田春艳  张令强  贺福初 《遗传》2006,28(11):1451-1456
KRAB型锌指蛋白是哺乳动物中最大的转录调控因子家族, 它的多数成员在基因组上成簇分布。其结构特征是N端含有KRAB结构域, C端含有多个C2H2型锌指结构。KRAB结构域为一蛋白质-蛋白质相互作用区, 可以与多种协同转录抑制因子和转录因子结合, 使KRAB型锌指蛋白作为转录因子和/或转录调控因子发挥依赖于DNA结合的转录抑制功能, 在胚胎发育、细胞分化、细胞转化及细胞周期的调控中发挥重要功能。  相似文献   

19.
Meisetz and the birth of the KRAB motif   总被引:3,自引:0,他引:3  
  相似文献   

20.
The chromosome locations of 368 human Kruppel-type zinc finger (ZNF) PAC clones were physically mapped by FISH to human chromosomes in support of recent efforts of assigning KOX cDNAs (KOX1-KOX32) to zinc finger gene clusters. Recent mapping results were validated and confirmed by sequence comparisons to zinc finger gene sequences automatically annotated in EnsEMBL. In toto, 799 Kruppel-type zinc finger genes have been annotated in EnsEMBL of which 290 genes are found to encode KRAB domains. Sequence homologies of the zinc finger domains were used to establish phylogenic trees of KOX zinc finger genes as well as of all KRAB containing human zinc finger and KOX genes documenting the evolution of KRAB zinc finger genes late in primate evolution. A list of 368 assigned ZNF PAC clones is available under http://www.pzr.uni-rostock.de/supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号