首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanine/glyoxylate aminotransferase 1 (AGT) is peroxisomal in most normal humans, but in some patients with the hereditary disease primary hyperoxaluria type 1 (PH1), AGT is mislocalized to the mitochondria. In an attempt to identify the sequences in AGT that mediate its targeting to peroxisomes, and to determine the mechanism by which AGT is mistargeted in PH1, we have studied the intracellular compartmentalization of various normal and mutant AGT polypeptides in normal human fibroblasts and cell lines with selective deficiencies of peroxisomal protein import, using immunofluorescence microscopy after intranuclear microinjection of AGT expression plasmids. The results show that AGT is imported into peroxisomes via the peroxisomal targeting sequence type 1 (PTS1) translocation pathway. Although the COOH-terminal KKL of human AGT was shown to be necessary for its peroxisomal import, this tripeptide was unable to direct the peroxisomal import of the bona fide peroxisomal protein firefly luciferase or the reporter protein bacterial chloramphenicol acetyltransferase. An ill-defined region immediately upstream of the COOH-terminal KKL was also found to be necessary for the peroxisomal import of AGT, but again this region was found to be insufficient to direct the peroxisomal import of chloramphenicol acetyltransferase. Substitution of the COOH-terminal KKL of human AGT by the COOH-terminal tripeptides found in the AGTs of other mammalian species (SQL, NKL), the prototypical PTS1 (SKL), or the glycosomal PTS1 (SSL) also allowed peroxisomal targeting, showing that the allowable PTS1 motif in AGT is considerably more degenerate than, or at least very different from, that acceptable in luciferase. AGT possessing the two amino acid substitutions responsible for its mistargeting in PH1 (i.e., Pro11-- >Leu and Gly170-->Arg) was targeted mainly to the mitochondria. However, AGTs possessing each amino acid substitution on its own were targeted normally to the peroxisomes. This suggests that Gly170-->Arg- mediated increased functional efficiency of the otherwise weak mitochondrial targeting sequence (generated by the Pro11-->Leu polymorphism) is not due to interference with the peroxisomal targeting or import of AGT.  相似文献   

2.
3.
In the yeast Saccharomyces cerevisiae, beta-oxidation of fatty acids is compartmentalised in peroxisomes. Most yeast peroxisomal matrix proteins contain a type 1C-terminal peroxisomal targeting signal (PTS1) consisting of the tripeptide SKL or a conservative variant thereof. PTS1-terminated proteins are imported by Pex5p, which interacts with the targeting signal via a tetratricopeptide repeat (TPR) domain. Yeast cells devoid of Pex5p are unable to import PTS1-containing proteins and cannot degrade fatty acids. Here, the PEX5-TPR domains from human, tobacco, and nematode were inserted into a TPR-less yeast Pex5p construct to generate Pex5p chimaeras. These hybrid proteins were examined for functional complementation of the pex5delta mutant phenotype. Expression of the Pex5p chimaeras in pex5delta mutant cells restored peroxisomal import of PTS1-terminated proteins. Chimaera expression also re-established degradation of oleic acid, allowing growth on this fatty acid as a sole carbon source. We conclude that, in the context of Pex5p chimaeras, the human, tobacco, and nematode Pex5p-TPR domains are functionally interchangeable with the native domain for the peroxisomal import of yeast proteins terminating with canonical PTS1s. Non-conserved yeast PTS1s, such as HRL and HKL, did not interact with the tobacco PEX5-TPR domain in the two-hybrid system. HRL occurs at the C-terminus of the peroxisomal protein Eci1p, which is required for growth on unsaturated fatty acids. Although mutant pex5delta cells expressing a yeast/tobacco Pex5p chimaera failed to import a GFP-Eci1p reporter protein, they were able to grow on oleic acid. We reason that this is due to a cryptic PTS in native Eci1p that can function in a redundant system with the C-terminal HRL.  相似文献   

4.
The initial steps of ether phospholipid biosynthesis take place in peroxisomes. Alkyl-dihydroxyacetonephosphate synthase, the peroxisomal enzyme that actually introduces the ether linkage, has been purified from guinea pig liver in this laboratory. With the amino acid sequences obtained from this protein, the authors were able to clone the cDNAs encoding this enzyme from both guinea pig and human liver. In both cases, the enzyme appears to be synthesized as a precursor protein with a N-terminal cleavable presequence containing a peroxisomal targeting signal (PTS) type 2. Levels of the enzyme protein were found to be strongly reduced in human fibroblasts derived from Zellweger syndrome and rhizomelic chondrodysplasia punctata patients. The molecular basis of an isolated alkyl-dihydroxyacetonephosphate synthase deficiency was resolved. A clone encoding a Caenorhabditis elegans homolog of the mammalian enzymes was characterized. In contrast to the mammalian enzymes, this C. elegans enzyme lacks a N-terminal PTS type 2 motif, but carries a C-terminal PTS type 1.  相似文献   

5.
Saccharomyces cerevisiae delta3,delta2-enoyl-CoA isomerase (Eci1p), encoded by ECI1, is an essential enzyme for the betaoxidation of unsaturated fatty acids. It has been reported, as well as confirmed in this study, to be a peroxisomal protein. Unlike many other peroxisomal proteins, Ecilp possesses both a peroxisome targeting signal type 1 (PTS1)-like signal at its carboxy-terminus (-HRL) and a PTS2-like signal at its amino-terminus (RIEGPFFIIHL). We have found that peroxisomal targeting of a fusion protein consisting of Eci1p in front of green fluorescent protein (GFP) is not dependent on Pex7p (the PTS2 receptor), ruling out a PTS2 mechanism, but is dependent on Pex5p (the PTS1 receptor). This Pex5p-dependence was unexpected, since the putative PTS1 of Ecilp is not at the C-terminus of the fusion protein; indeed, deletion of this signal (-HRL-) from the fusion did not affect the Pex5p-dependent targeting. Consistent with this, Pex5p interacted in two-hybrid assays with both Eci1p and Eci1PdeltaHRL. Ecilp-GFP targeting and Eci1pdeltaHRL interaction were abolished by replacement of Pex5p with Pex5p(N495K), a point-mutated Pex5p that specifically abolishes the PTS1 protein import pathway. Thus, Eci1p peroxisomal targeting does require the Pex5p-dependent PTS1 pathway, but does not require a PTS1 of its own. By disruption of ECI1 and DCI1, we found that Dci1p, a peroxisomal PTS1 protein that shares 50% identity with Eci1p, is necessary for Eci1p-GFP targeting. This suggests that the Pex5p-dependent import of Eci1p-GFP is due to interaction and co-import with Dci1p. Despite the dispensability of the C-terminal HRL for import in wild-type cells, we have also shown that this tripeptide can function as a PTS1, albeit rather weakly, and is essential for targeting in the absence of Dci1p. Thus, Eci1p can be targeted to peroxisomes by its own PTS1 or as a hetero-oligomer with Dcilp. These data demonstrate a novel, redundant targeting pathway for Eci1p.  相似文献   

6.
The product of the porcine HSD17B4 gene is a peroxisomal 80 kDa polypeptide containing three functionally distinct domains. The N-terminal part reveals activities of 17beta-estradiol dehydrogenase type IV and D-specific 3-hydroxyacyl CoA dehydrogenase, the central part shows D-specific hydratase activity with straight and 2-methyl-branched 2-enoyl-CoAs. The C-terminal part is similar to sterol carrier protein 2. The 80 kDa polypeptide chain ends with the tripeptide AKI, which resembles the motif SKL, the first identified peroxisome targeting signal PTS1. So far AKI, although being similar to the consensus sequence PTS1, has neither been reported to be present in mammalian peroxisomal proteins, nor has it been shown to be functional. We investigated whether the HSD17B4 gene product is targeted to peroxisomes by this C-terminal motif. Recombinant human PTS1 binding protein Pex5p interacted with the bacterially expressed C-terminal domain of the HSD17B4 gene product. Binding was competitively blocked by a SKL-containing peptide. Recombinant deletion mutants of the C-terminal domain lacking 3, 6, and 14 amino acids and presenting KDY, MIL, and IML, respectively, at their C-termini did not interact with Pex5p. The wild-type protein and mutants were also transiently expressed in the HEK 293 cells. Immunofluorescence analysis with polyclonal antibodies against the C-terminal domain showed a typical punctate peroxisomal staining pattern upon wild-type transfection, whereas all mutant proteins localized in the cytoplasm. Therefore, AKI is a functional PTS1 signal in mammals and the peroxisome targeting of the HSD17B4 gene product is mediated by Pex5p.  相似文献   

7.
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.  相似文献   

8.
Many peroxisomal proteins are imported into peroxisomes via recognition of the peroxisomal targeting signal (PTS1) present at the C-termini by the PTS1 receptor (Pex5p). Catalase, a peroxisomal protein, has PTS1-like motifs around or at the C-terminus. However, it remains unclear whether catalase is imported into peroxisome via the PTS1 system. In this work, we analyzed the PTS of pumpkin catalase (Cat1). A full or truncated pumpkin Cat1 cDNA fused at the 3' end of the green fluorescent protein (GFP) coding sequence was introduced and stably expressed in tobacco BY-2 (Nicotiana tabacum cv. Bright Yellow 2) cells or Arabidopsis thaliana by Agrobacterium-mediated transformation. The cellular localization of GFP was analyzed by fluorescence microscopy. The results showed that the C-terminal 10-amino acid region containing an SKL motif-like tripeptide (SHL) was not required for the import into peroxisomes. Surprisingly, the C-terminal 3-amino acid region was required for the import when the fusion proteins were transiently expressed by using particle gun bombardment, suggesting that the transient expression system is inadequate to analyze the targeting signal. We proposed that the C-terminal amino acid region from 13 to 11 (QKL), which corresponds with the PTS1 consensus sequence, may function as an internal PTS1. Analysis of the binding of Cat1 to PTS1 receptor (Pex5p) by the yeast two-hybrid system revealed that Cat1 can bind with the PTS1 receptor (Pex5p), indicating that Cat1 is imported into peroxisomes by the PTS1 system.  相似文献   

9.
Primary hyperoxaluria type 1 (PH1) is an atypical peroxisomal disorder, as befits a deficiency of alanine:glyoxylate aminotransferase (AGT), which is itself an atypical peroxisomal enzyme. PH1 is characterized by excessive synthesis and excretion of the metabolic end-product oxalate and the progressive accumulation of insoluble calcium oxalate in the kidney and urinary tract. Disease in many patients is caused by a unique protein trafficking defect in which AGT is mistargeted from peroxisomes to mitochondria, where it is metabolically ineffectual, despite remaining catalytically active. Although the peroxisomal import of human AGT is dependent upon the PTS1 import receptor PEX5p, its PTS1 is exquisitely specific for mammalian AGT, suggesting the presence of additional peroxisomal targeting information elsewhere in the AGT molecule. This and many other functional peculiarities of AGT are probably a consequence of its rather chequered evolutionary history, during which much of its time has been spent being a mitochondrial, rather than a peroxisomal, enzyme. Analysis of the molecular basis of AGT mistargeting in PH1 has thrown into sharp relief some of the fundamental differences between the requirements of the peroxisomal and mitochondrial protein import pathways, particularly the properties of peroxisomal and mitochondrial matrix targeting sequences and the different conformational limitations placed upon importable cargos.  相似文献   

10.
We have cloned the Hansenula polymorpha PEX4 gene by functional complementation of a peroxisome-deficient mutant. The PEX4 translation product, Pex4p, is a member of the ubiquitin-conjugating enzyme family. In H.polymorpha, Pex4p is a constitutive, low abundance protein. Both the original mutant and the pex4 deletion strain (Deltapex4) showed a specific defect in import of peroxisomal matrix proteins containing a C-terminal targeting signal (PTS1) and of malate synthase, whose targeting signal is not yet known. Import of the PTS2 protein amine oxidase and the insertion of the peroxisomal membrane proteins Pex3p and Pex14p was not disturbed in Deltapex4 cells. The PTS1 protein import defect in Deltapex4 cells could be suppressed by overproduction of the PTS1 receptor, Pex5p, in a dose-response related manner. In such cells, Pex5p is localized in the cytosol and in peroxisomes. The peroxisome-bound Pex5p specifically accumulated at the inner surface of the peroxisomal membrane and thus differed from Pex5p in wild-type peroxisomes, which is localized throughout the matrix. We hypothesize that in H. polymorpha Pex4p plays an essential role for normal functioning of Pex5p, possibly in mediating recycling of Pex5p from the peroxisome to the cytosol.  相似文献   

11.
Pex14p is a central component of the peroxisomal protein import machinery, which has been suggested to provide the point of convergence for PTS1- and PTS2-dependent protein import in yeast cells. Here we describe the identification of a human peroxisome-associated protein (HsPex14p) which shows significant similarity to the yeast Pex14p. HsPex14p is a carbonate-resistant peroxisomal membrane protein with its C terminus exposed to the cytosol. The N terminus of the protein is not accessible to exogenously added antibodies or protease and thus might protrude into the peroxisomal lumen. HsPex14p overexpression leads to the decoration of tubular structures and mislocalization of peroxisomal catalase to the cytosol. HsPex14p binds the cytosolic receptor for the peroxisomal targeting signal 1 (PTS1), a result consistent with a function as a membrane receptor in peroxisomal protein import. Homo-oligomerization of HsPex14p or interaction of the protein with the PTS2-receptor or HsPex13p was not observed. This distinguishes the human Pex14p from its counterpart in yeast cells and thus supports recent data suggesting that not all aspects of peroxisomal protein import are conserved between yeasts and humans. The role of HsPex14p in mammalian peroxisome biogenesis makes HsPEX14 a candidate PBD gene for being responsible for an unrecognized complementation group of human peroxisome biogenesis disorders.  相似文献   

12.
Pig heart peroxisomal carbonyl reductase (PerCR) belongs to the short-chain dehydrogenase/reductase family, and its sequence comprises a C-terminal SRL tripeptide, which is a variant of the type 1 peroxisomal targeting signal (PTS1) Ser-Lys-Leu. PerCR is imported into peroxisomes of HeLa cells when the cells are transfected with vectors expressing the enzyme. However, PerCR does not show specific targeting when introduced into the cells with a protein transfection reagent. To understand the structural basis for peroxisomal localization of PerCR, we determined the crystal structure of PerCR. Our data revealed that the C-terminal PTS1 of each subunit of PerCR was involved in intersubunit interactions and was buried in the interior of the tetrameric molecule. These findings indicate that the PTS1 receptor Pex5p in the cytosol recognizes the monomeric form of PerCR whose C-terminal PTS1 is exposed, and that this PerCR is targeted into the peroxisome, thereby forming a tetramer.  相似文献   

13.
We identified a Saccharomyces cerevisiae peroxisomal membrane protein, Pex13p, that is essential for protein import. A point mutation in the COOH-terminal Src homology 3 (SH3) domain of Pex13p inactivated the protein but did not affect its membrane targeting. A two-hybrid screen with the SH3 domain of Pex13p identified Pex5p, a receptor for proteins with a type I peroxisomal targeting signal (PTS1), as its ligand. Pex13p SH3 interacted specifically with Pex5p in vitro. We determined, furthermore, that Pex5p was mainly present in the cytosol and only a small fraction was associated with peroxisomes. We therefore propose that Pex13p is a component of the peroxisomal protein import machinery onto which the mobile Pex5p receptor docks for the delivery of the selected PTS1 protein.  相似文献   

14.

Background  

The C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus. Previously, structural data have been obtained from the TPR domain of Pex5p in both the liganded and unliganded states, indicating a conformational change taking place upon cargo protein binding. Such a conformational change would be expected to play a major role both during PTS1 protein recognition as well as in cargo release into the peroxisomal lumen. However, little information is available on the factors that may regulate such structural changes.  相似文献   

15.
Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although only a small amount of Pex5p is bound to peroxisomes at steady state (< 5%), loss of Pex13p further reduces the amount of peroxisome- associated Pex5p by approximately 40-fold. Furthermore, loss of Pex13p eliminates import of peroxisomal matrix proteins that contain either the type-1 or type-2 peroxisomal targeting signal but does not affect targeting and insertion of integral peroxisomal membrane proteins. We conclude that Pex13p functions as a docking factor for the predominantly cytoplasmic PTS1 receptor.  相似文献   

16.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

17.
Two isoforms of the peroxisomal targeting signal type 1 (PTS1) receptor, termed Pex5pS and (37-amino-acid-longer) Pex5pL, are expressed in mammals. Pex5pL transports PTS1 proteins and Pex7p-PTS2 cargo complexes to the initial Pex5p-docking site, Pex14p, on peroxisome membranes, while Pex5pS translocates only PTS1 cargoes. Here we report functional Pex5p domains responsible for interaction with peroxins Pex7p, Pex13p, and Pex14p. An N-terminal half, such as Pex5pL(1-243), comprising amino acid residues 1 to 243, bound to Pex7p, Pex13p, and Pex14p and was sufficient for restoring the impaired PTS2 import of pex5 cell mutants, while the C-terminal tetratricopeptide repeat motifs were required for PTS1 binding. N-terminal Pex5p possessed multiple Pex14p-binding sites. Alanine-scanning analysis of the highly conserved seven (six in Pex5pS) pentapeptide WXXXF/Y motifs residing at the N-terminal region indicated that these motifs were essential for the interaction of Pex5p with Pex14p and Pex13p. Moreover, mutation of several WXXXF/Y motifs did not affect the PTS import-restoring activity of Pex5p, implying that the binding of Pex14p to all of the WXXXF/Y sites was not a prerequisite for the translocation of Pex5p-cargo complexes. Pex5p bound to Pex13p at the N-terminal part, not to the C-terminal SH3 region, via WXXXF/Y motifs 2 to 4. PTS1 and PTS2 import required the interaction of Pex5p with Pex14p but not with Pex13p, while Pex5p binding to Pex13p was essential for import of catalase with PTS1-like signal KANL. Pex5p recruited PTS1 proteins to Pex14p but not to Pex13p. Pex14p and Pex13p formed a complex with PTS1-loaded Pex5p but dissociated in the presence of cargo-unloaded Pex5p, implying that PTS cargoes are released from Pex5p at a step downstream of Pex14p and upstream of Pex13p. Thus, Pex14p and Pex13p very likely form mutually and temporally distinct subcomplexes involved in peroxisomal matrix protein import.  相似文献   

18.
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.  相似文献   

19.
Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  相似文献   

20.
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1–110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号