首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
ATP binding to dnaA protein is essential for its action in initiating the replication of plasmids that bear the unique origin of the Escherichia coli chromosome (oriC). ADP bound to that site renders dnaA protein inactive for replication. Diphosphatidylglycerol (cardiolipin), a diacidic membrane phospholipid, displaces the bound nucleotide, and in the presence of components that reconstitute replication, fully reactivates the inert ADP form of dnaA protein. The monacidic phosphatidylglycerol is one-tenth as active as cardiolipin, whereas the neutral phosphatidylethanolamine, the principal E. coli phospholipid, is inactive. Fluphenazine, a tranquilizer drug, blocks cardiolipin activation of dnaA protein, in keeping with the inhibitory action of such agents on phospholipid-dependent enzymes. With the use of this drug to terminate cardiolipin action, dependence of the activation on time, elevated temperature, and high levels of ATP was demonstrated. Cardiolipin binding of nucleotide-free dnaA protein prevents binding of ATP and initiation of oriC replication. Removal of a fatty acid from cardiolipin by phospholipase A reverses this inhibitory effect. The strong and specific interaction of cardiolipin, a cell membrane component, with an essential nucleotide-binding site of dnaA protein, the protein essential for the initiation of chromosome replication, may be an important element in regulating the cell cycle.  相似文献   

3.
DnaA protein initiates DNA replication at the Escherichia coli chromosomal origin. We describe a system for efficient production and purification of replicatively active DnaA protein. The dnaA gene was cloned in-frame with a sequence encoding a polyhistidine tag and expressed from a T7 promoter regulated by the lac operator. DnaA with the amino terminal polyhistidine tag was isolated using immobilized metal-ion affinity chromatography. Immunoblot analysis indicated that the tagged protein was intact and migrated with the expected molecular weight. The yield of purified protein was greater than 10 mg per liter of cell culture. The polyhistidine-tagged DnaA protein was comparable to nontagged DnaA protein for initiating in vitro DNA replication, binding to oriC DNA, binding of allosteric effector adenine nucleotides, and interaction with membrane acidic phospholipids. This system for rapid and high-yield generation of replication-active DnaA protein should facilitate structure-function studies and mutagenic analyses of this initiator protein.  相似文献   

4.
P J Gaylo  N Turjman    D Bastia 《Journal of bacteriology》1987,169(10):4703-4709
The minimal origin of replication of the broad-host-range plasmid RK2 has two potential recognition sequences for the DnaA protein of Escherichia coli. DNA transfer by transformation into a dnaA-null mutant of E. coli showed that DnaA protein is needed for replication or maintenance of mini-RK2. We isolated and purified DnaA protein as a chimeric protein, covalently attached to a piece of collagen and beta-galactosidase. The hybrid protein specifically bound to restriction fragments from the oriV region of RK2, which contained the two dnaA boxes. Deletion of the second dnaA box inactivated the origin and abolished the binding of the hybrid protein to the DNA fragment that had suffered the deletion. When the second dnaA box was replaced with an EcoRI linker of identical length, origin activity was restored. Binding experiments showed that the linker provided a weak dnaA box. An alternative explanation was that the linker restored proper spacing between sequences on either side of the deleted box, thus restoring origin activity.  相似文献   

5.
The dnaA gene is essential for initiation of chromosomal replication in Escherichia coli. A gene homologous with the E. coli dnaA was found in the replication origin region of the Bacillus subtilis chromosome. We have now isolated a temperature sensitive mutant of the B. subtilis dnaA by in vitro mutagenesis of the cloned gene. At a nonpermissive temperature, 49 degrees C, DNA replication stops completely after 60% increase in a rich medium, while cell mass continues to increase exponentially at 2.5 times the rate at 30 degrees C. A ratio of gene frequency between purA (origin marker) and metB (terminus marker) changes gradually from 2.7 at 30 degrees C to 1.0 in 45 min at 49 degrees C, indicating completion of the ongoing replication cycle. Upon the temperature shift down to 30 degrees C after the incubation at 49 degrees C for 60 min, DNA replication resumes without delay, and the purA/metB ratio increases rapidly to 6, i.e. consecutive initiation of more than two rounds of replication. Addition of chloramphenicol at the time of the temperature shift down did not inhibit the increase in the purA/metB ratio, while rifampicin inhibited the re-initiation completely. The mutation is a single base change from C to T in the dnaA gene resulting in an amino acid substitution from Ser to Phe in the DnaA protein. The mutation was responsible for both temperature sensitive growth and the defect in initiation of chromosomal replication. We observed a remarkable correlation between the amount of DnaA protein and the amount of initiation potential accumulated during incubation at the non-permissive temperature.  相似文献   

6.
The sdrA224 mutants of Escherichia coli K-12, capable of continued DNA replication in the absence of protein synthesis (stable DNA replication), tolerate inactivation of the dnaA gene by insertion of transposon Tn10. Furthermore, oriC, the origin of E. coli chromosome replication, can be deleted from the chromosome of sdrA mutants without loss of viability. The results suggest the presence of a second, normally repressed, initiation system for chromosome replication alternative to the 'normal' dnaA+ oriC+-dependent initiation mechanism.  相似文献   

7.
Lethal, amber mutations in T4 genes 46 and 47 cause incomplete degradation of host DNA, premature arrest of phage DNA synthesis, accumulation of abnormal DNA replication intermediates, and defective recombination. These phenotypes can be explained by the hypothesis that genes 46 and 47 control a DNA exonuclease, but in vitro demonstration of such a nuclease has not yet been reported. Membrane and supernatant fractions from 46- and 47- mutant-infected and 46+ 47+ control-infected cells were assayed for the presence of the protein products of these genes (i.e., gp46 and gp47) and for the ability to degrade various DNA substrates to acid-soluble products in vitro. The two proteins were found only on membranes. The membrane fraction from 46- 47- mutant-infected cells digested native or heavily nicked Escherichia coli DNA to acid-soluble products three to four times slower that the membrane fraction from control-infected cells. No such effect was found in the cytoplasmic fractions. The effect on nuclease activity in membranes was the same whether 46- and 47- mutations were present singly or together. NaClO4, a chaotropic agent, released both gp46 and gp47 from 46+ 47+ membranes, as well as the DNase activity controlled by genes 46 and 47. DNA cellulose chromatography of proteins released from membranes by NaClO4 showed that gp46 and gp47 bound to the native DNAs of both E. coli and T4. Thus, the overall enrichment of gp46 and gp47 relative to total T4 protein was 600-fold (10-fold in membranes, 2-fold more upon release from membranes by NaClO4, and 30-fold more upon elution from DNA cellulose). T4 das mutations, which partially suppress the defective phenotype of 46- and 47- mutants, caused a considerable increase in vitro DNase activity in both membrane and cytoplasmic fractions, We obtained evidence that the das+ gene does not function to inhibit E. coli exonuclease I or V, endonuclease I, or the UV endonuclease of gene uvrA or to decrease the activity of T4 exonuclease A or the T4 gene 43 exonuclease.  相似文献   

8.
Gene 4 protein (gp4) of bacteriophage T7 provides two essential functions at the T7 replication fork, primase and helicase activities. Previous studies have shown that the single-stranded DNA-binding protein of T7, encoded by gene 2.5, interacts with gp4 and modulates its multiple functions. To further characterize the interactions between gp4 and gene 2.5 protein (gp2.5), we have examined the effect of wild-type and altered gene 2.5 proteins as well as Escherichia coli single-stranded DNA-binding (SSB) protein on the ability of gp4 to synthesize primers, hydrolyze dTTP, and unwind duplex DNA. Wild-type gp2.5 and E. coli SSB protein stimulate primer synthesis and DNA-unwinding activities of gp4 at low concentrations but do not significantly affect single-stranded DNA-dependent hydrolysis of dTTP. Neither protein inhibits the binding of gp4 to single-stranded DNA. The variant gene 2.5 proteins, gp2.5-F232L and gp2.5-Delta26C, inhibit primase, dTTPase, and helicase activities proportional to their increased affinities for DNA. Interestingly, wild-type gp2.5 stimulates the unwinding activity of gp4 except at very high concentrations, whereas E. coli SSB protein is highly inhibitory at relative low concentrations.  相似文献   

9.
The DnaA protein concentration in Escherichia coli was increased above the wild-type level by inducing a lacP-controlled dnaA gene located on a plasmid. In these cells with different DnaA protein levels, we measured several parameters: dnaA gene expression; cell size, amount of DNA per cell, and number of origins per cell by flow cytometry; and origin-to-terminus ratio and the frequencies of five other markers on the chromosome by Southern hybridization. The response of the cells to higher levels of DnaA protein could be divided into three states. From the normal level to a level 1.5-fold higher, DnaA protein had little effect on dnaA gene expression and the rate of DNA replication but led to nearly proportional increases in DNA and origin concentrations. Between 1.5- and 3-fold, the normal DnaA protein concentration, dnaA gene expression was gradually decreased. In this interval, the origin concentration increased significantly; however, the replication rate was severely affected, becoming slower--especially near the origin--the higher the DnaA protein concentration, and as a result, the DNA concentration was constant. Further increases in the DnaA protein concentration did not lead to an increased origin concentration. Thus, the initiation mass was set by the DnaA protein from the normal level to an at least twofold-increased level, but the increased initiation did not lead to a large increase in the amount of DNA per unit of mass because of the inhibition of replication fork velocity.  相似文献   

10.
11.
12.
Two proteins have been identified which stimulate a mutant form of dnaA protein in replication of plasmids containing the chromosomal origin, oriC. One of these is dnaK protein by the criteria of (i) absence of stimulatory activity in enzyme fractions from dnaK mutants, (ii) elevated levels of stimulatory activity in fractions from a dnaK protein overproducer, (iii) comigration of the stimulatory protein with authentic dnaK protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and (iv) replacement of this stimulatory protein by dnaK protein in stimulation assays. The stimulatory effect of dnaK protein on dnaA46 protein in replication suggests that this interaction, occurring prior to its action in DNA replication, may regulate its activity.  相似文献   

13.
Plasmids carrying the intact Bacillus subtilis dnaA-like gene and two reciprocal hybrids between the B. subtilis and Escherichia coli dnaA genes were constructed. None of the plasmids could transform wild-type E. coli cells unless the cells contained surplus E. coli DnaA protein (DnaAEc). A dnaA (Ts) strain integratively suppressed by the plasmid R1 origin could be transformed by plasmids carrying either the B. subtilis gene (dnaABs) or a hybrid gene containing the amino terminus of the E. coli gene and the carboxyl terminus of the B. subtilis gene (dnaAEc/Bs). In cells with surplus E. coli DnaA protein, expression of the E. coli dnaA gene was derepressed by the B. subtilis DnaA protein and by the hybrid DnaAEc/Bs protein, whereas it was strongly repressed by the reciprocal hybrid protein DnaABs/Ec. The plasmids carrying the different dnaA genes probably all interfere with initiation of chromosome replication in E. coli by decreasing the E. coli DnaA protein concentration to a limiting level. The DnaABs and the DnaAEc/Bs proteins effect this decrease possibly by forming inactive oligomeric proteins, while the DnaABs/Ec protein may decrease dnaAEc gene expression.  相似文献   

14.
Crude soluble enzyme fractions that initiate bidirectional replication from the unique Escherichia coli chromosomal origin (oriC) have been fractionated further to identify the components and mechanisms of this complex system. Among the necessary factors is a class of specificity proteins that suppress initiations on plasmids which lack the oriC sequence and which do not depend on dnaA protein. One such specificity factor has been identified as RNase H (Ogawa, T., Pickett, G. G., Kogoma, T., and Kornberg, A. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1040-1044). Another, described here, has proved to be topoisomerase I. A protein was purified to near homogeneity based on assays of (i) inhibition of the replication of plasmids (and other supercoiled DNA) lacking oriC and (ii) conferral of dnaA protein dependence on the replication of an oriC plasmid. This specificity protein is indistinguishable from authentic E. coli topoisomerase I by several criteria: (i) molecular weight under denaturing conditions, (ii) relaxation activity on negatively supercoiled DNA, (iii) cleavage pattern of single-stranded DNA, (iv) specificity factor activity, and (v) neutralization of activity by antibody against topoisomerase I. One possible mechanism of the specificity action of topoisomerase I is destabilization of primers for replication except when they are preserved at an oriC sequence bound by dnaA protein and other replication proteins.  相似文献   

15.
Two key elements that are thought to be required for replication initiation in eubacteria are the DnaA protein, a trans-acting factor, and the replication origin, a cis-acting element. As a first step in studying the replication initiation process in mycobacteria, we have isolated a 4-kb chromosomal DNA fragment from Mycobacterium smegmatis that contains the dnaA gene. Nucleotide sequence analysis of this region revealed homologies with the rpmH gene, which codes for the ribosomal protein L34, the dnaA gene, which codes for the replication initiator protein DnaA, and the 5' end of the dnaN gene, which codes for the beta subunit of DNA polymerase III. Further, we provide evidence that when cloned into pUC18, a plasmid that is nonreplicative in M. smegmatis, the DNA fragment containing the dnaA gene and its flanking regions rendered the former capable of autonomous replication in M. smegmatis. We suggest that the M. smegmatis chromosomal origin of replication is located within the 4-kb DNA fragment.  相似文献   

16.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

17.
Initiation of chromosomal DNA replication of several Escherichia coli dnaA (Ts) strains is diminished in cell harbouring pBR322 hybrid plasmids carrying both oriC and the adjacent 16kD gene promoter of E. coli K12. This perturbance, resulting in very slow growth, is caused both by the dnaA allele and the E. coli B/r-derived region of the replication origin of these strains. Cloning and DNA sequence analysis of the E. coli B/r replication origin revealed several base differences as compared to the E. coli K12 sequence. The replication origin of temperature sensitive fast growing mutants, originating from a homologous exchange between chromosomal and plasmid DNA sequences were also cloned. Sequence data showed that a single base change within the promoter of the 16kD gene of these dnaA (Ts) strains is able to suppress the inhibition of chromosomal DNA replication by the mentioned pBR322 hybrid plasmids. Our results strongly indicate a role of the 16kD gene promoter in control of initiation of chromosomal DNA replication.  相似文献   

18.
19.
Bacteriophage P4 DNA replication depends upon the phage-encoded alpha protein, which has DNA helicase and DNA primase activity and can specifically bind to the replication origin (ori) and to the cis replicating region (crr). The P4 Cnr protein functions as a negative regulator of P4 replication, and P4 does not replicate in cells that overexpress cnr. We searched for P4 mutants that suppressed this phenotype (Cnr resistant [alpha cr]). Eight independent mutants that grew in the presence of high levels of Cnr were obtained. None of these can establish the plasmid state. Each of these mutations lies in the DNA binding domain of gp alpha that occupies the C terminus of the protein. Five different sequence changes were found: T675M, G732V (three times), G732W (twice), L733V, and L737V. A TrxA-Cnr fusion protein does not bind DNA by itself but stimulates the ori and crr binding abilities of alpha protein in vitro. The alpha cr mutant proteins were still able to bind specifically to ori or crr, but specific DNA binding was less stimulated by the TrxA-Cnr protein. We present evidence that Cnr protein interacts with the gp alpha domain that binds specifically to DNA and that gp(alpha)cr mutations impair this interaction. We hypothesize that gp alpha-Cnr interaction is essential for the control of P4 DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号