首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Island populations are often thought to be more susceptible to the loss of genetic diversity as a consequence of limited population size and genetic drift, greater susceptibility to detrimental stochastic events and low levels of immigration. However the geographic isolation of islands may create refuges for native crop species whose genetic diversity is threatened from the genetic erosion occurring in mainland areas as a result of crop-wild gene flow and genetic swamping. Many UK islands remain uncharacterised in terms of plant genetic diversity. In this study we compared the genetic diversity of mainland populations and landraces of Trifolium repens with wild populations collected from the islands surrounding the UK, including the island of Hirta in the St Kildan archipelago. Individuals from St Kilda represent a unique conservation resource, with populations both highly differentiated from UK mainland populations and genetically distinct from cultivated varieties, whilst able to retain diversity through limited human influence on the islands. In contrast, there is relative genetic similarity of wild UK populations to cultivated forms highlighted in mainland populations, but with geographic barriers preventing complete homogenisation of the mainland UK genepool. We underline the need for conservation priorities to include common species that are threatened by gene flow from cultivation, and draw attention to the potential of islands to preserve natural levels of genetic diversity.  相似文献   

2.
Introgression arising from crop-to-wild gene flow provides novel sources of genetic variation in plant species complexes. Hybridization within the Beta vulgaris species complex is of immediate concern; crop lineages ( B .  vulgaris ssp. vulgaris ) hybridize easily with their wild relatives ( B .  vulgaris ssp. maritima ) thereby threatening wild beet gene diversity with genetic swamping. Hybridization 'hotspots' occur in European seed production areas because inland ruderal wild beets occur and reproduce in sympatry with cultivated beets. We studied gene flow occurring between seed-producing cultivars and ruderal wild B .  vulgaris in southwestern France to determine whether feral beets, arising from unharvested cultivated seed, represent an opportunity for crop-to-wild gene flow. We surveyed 42 inland ruderal beet populations located near seed production fields for nucleo-cytoplasmic variation and used a cytoplasmic marker diagnostic of cultivated lines. Occurrence of cultivated-type cytoplasm within ruderal populations clearly reflected events of crop seed escape. However, we found no genetic signatures of nuclear cultivated gene introgression, which suggests past introgression of cultivated cytoplasm into a wild nuclear background through seed escape rather than recent direct pollen flow. Overall, patterns of genetic structure suggested that inland ruderal wild beet populations act as a metapopulation, with founding events involving a few sib groups, followed by low rates of seed or pollen gene flow after populations are established. Altogether, our results indicate that a long-lived seed bank plays a key role in maintaining cultivated-type cytoplasm in the wild and highlight the need for careful management of seed production areas where wild and cultivated relatives co-occur.  相似文献   

3.
Plant scientists have long recognized the need to develop crops that absorb and use nutrients more efficiently. Two approaches have been used to increase nutrient use efficiency (NUE) in crop plants. The first involves both traditional breeding and marker-assisted selection in an attempt to identify the genes involved. The second uses novel gene constructs designed to improve specific aspects of NUE. Here, we discuss some recent developments in the genetic manipulation of NUE in crop plants and argue that an improved understanding of the transition between nitrogen assimilation and nitrogen recycling will be important in applying this technology to increasing crop yields. Moreover, we emphasize the need to combine genetic and transgenic approaches to make significant improvements in NUE.  相似文献   

4.
Introgressive hybridization has played a crucial role in the evolution of many plant species, especially polyploids. The duplicated genetic material and wide geographical distribution facilitate hybridization and introgression among polyploid species having either homologous or homoeologous genomes. Such introgression may lead to the production of recombinant genomes that are more difficult to form at the diploid level. Crop genes that have introgressed into wild relatives can increase the capability of the wild relatives to adapt to agricultural environments and compete with crops or to compete with other wild species. Although the transfer of genes from crops into their conspecific immediate wild progenitors has been reported, little is known about spontaneous gene movement from crops to more distantly related species. We describe recent spontaneous DNA introgression from domesticated polyploid wheat into distantly related, wild tetraploid Aegilops peregrina (syn. Aegilops variabilis) and the stabilization of this sequence in wild populations despite not having homologous chromosomes. Our results show that DNA can spontaneously introgress between homoeologous genomes of species of the tribe Triticeae and, in the case of crop-wild relatives, possibly enrich the wild population. These results also emphasize the need for fail-safe mechanisms in transgenic crops to prevent gene flow where there may be ecological risks.  相似文献   

5.
Gene flow from crops to wild related species has been recently under focus in risk-assessment studies of the ecological consequences of growing transgenic crops. However, experimental studies addressing this question are usually temporally or spatially limited. Indirect population-structure approaches can provide more global estimates of gene flow, but their assumptions appear inappropriate in an agricultural context. In an attempt to help the committees providing advice on the release of transgenic crops, we present a new method to estimate the quantity of genes migrating from crops to populations of related wild plants by way of pollen dispersal. This method provides an average estimate at a landscape level. Its originality is based on the measure of the inverse gene flow, i.e. gene flow from the wild plants to the crop. Such gene flow results in an observed level of impurities from wild plants in crop seeds. This level of impurity is usually known by the seed producers and, in any case, its measure is easier than a direct screen of wild populations because crop seeds are abundant and their genetic profile is known. By assuming that wild and cultivated plants have a similar individual pollen dispersal function, we infer the level of pollen-mediated gene flow from a crop to the surrounding wild populations from this observed level of impurity. We present an example for sugar beet data. Results suggest that under conditions of seed production in France (isolation distance of 1,000 m) wild beets produce high numbers of seeds fathered by cultivated plants. Received: 5 February 2001 / Accepted: 26 March 2001  相似文献   

6.
转基因植物对农业生物多样性的影响   总被引:17,自引:3,他引:17  
论述了近年来转基因植物对农业生态系统生物多样性影响的研究进展.主要在遗传多样性、物种多样性和生态系统多样性3个层次上予以评述.包括转基因植物对作物遗传多样性的影响;转基因植物的外源基因向杂草和近缘野生种转移;转基因抗虫植物对目标害虫的影响。抗除草剂转基因植物对作物和杂草的影响,抗病毒转基因植物对病毒的影响;转基因植物对非目标生物的影响,对土壤生态系统的影响等.  相似文献   

7.
8.
高等植物碳循环基因工程研究进展   总被引:1,自引:0,他引:1  
高等植物根据其CO2同化方式的不同,可分为C3植物、C4植物和CAM植物。由于C4植物特殊的光合作用方式,其光合能力明显高于C3植物。然而,大多数农作物都是C3植物。为了改善C3植物的光合能力,人们试图通过转基因的方法来改造C3作物,以提高主要农作物如水稻(Oryza sativa)、小麦(Triticum aestivum)和大豆(Glycine max)等的光合生产力,并在这些方面做了很多有益的尝试。该文主要综述了通过转基因方法改善碳循环能力的一些进展,并对一些尚需深入研究的问题进行了探讨。  相似文献   

9.
Gene flow is a crucial parameter that can affect the organization of genetic diversity in plant species. It has important implications in terms of conservation of genetic resources and of gene exchanges between crop to wild relatives and within crop species complex. In the Beta vulgaris complex, hybridization between crop and wild beets in seed production areas is well documented and the role of the ensuing hybrids, weed beets, as bridges towards wild forms in sugar beet production areas have been shown. Indeed, in contrast to cultivated beets that are bi-annual, weed beets can bolt, flower and reproduce in the same crop season. Nonetheless, the extent of pollen gene dispersal through weedy lineages remains unknown. In this study, the focus is directed towards weed-to-weed gene flow, and we report the results of a pollen-dispersal analysis within an agricultural landscape composed of five sugar beet fields with different levels of infestation by weed beets. Our results, based on paternity analysis of 3240 progenies from 135 maternal plants using 10 microsatellite loci, clearly demonstrate that even if weedy plants are mostly pollinated by individuals from the same field, some mating events occur between weed beets situated several kilometres apart (up to 9.6 km), with rates of interfield-detected paternities ranging from 11.3% to 17.5%. Moreover, we show that pollen flow appears to be more restricted when individuals are aggregated as most mating events occurred only for short-distance classes. The best-fit dispersal curves were fat-tailed geometric functions for populations exhibiting low densities of weed beets and thin-tailed Weibull function for fields with weed beet high densities. Thus, weed beet populations characterized by low density with geographically isolated individuals may be difficult to detect but are likely to act as pollen traps for pollen emitted by close and remote fields. Hence, it appears evident that interfield pollen-mediated gene flow between weed beets is almost unavoidable and could contribute to the diffusion of (trans)genes in the agricultural landscape.  相似文献   

10.
Next generation Sequencing (NGS) provides a powerful tool for discovery of domestication genes in crop plants and their wild relatives. The accelerated domestication of new plant species as crops may be facilitated by this knowledge. Re-sequencing of domesticated genotypes can identify regions of low diversity associated with domestication. Species-specific data can be obtained from related wild species by whole-genome shot-gun sequencing. This sequence data can be used to design species specific polymerase chain reaction (PCR) primers. Sequencing of the products of PCR amplification of target genes can be used to explore genetic variation in large numbers of genes and gene families. Novel allelic variation in close or distant relatives can be characterized by NGS. Examples of recent applications of NGS to capture of genetic diversity for crop improvement include rice, sugarcane and Eucalypts. Populations of large numbers of individuals can be screened rapidly. NGS supports the rapid domestication of new plant species and the efficient identification and capture of novel genetic variation from related species.  相似文献   

11.
Gene flow among populations can enhance local adaptation if it introduces new genetic variants available for selection, but strong gene flow can also stall adaptation by swamping locally beneficial genes. These outcomes can depend on population size, genetic variation, and the environmental context. Gene flow patterns may align with geographic distance (IBD—isolation by distance), whereby immigration rates are inversely proportional to the distance between populations. Alternatively gene flow may follow patterns of isolation by environment (IBE), whereby gene flow rates are higher among similar environments. Finally, gene flow may be highest among dissimilar environments (counter‐gradient gene flow), the classic “gene‐swamping” scenario. Here we survey relevant studies to determine the prevalence of each pattern across environmental gradients. Of 70 studies, we found evidence of IBD in 20.0%, IBE in 37.1%, and both patterns in 37.1%. In addition, 10.0% of studies exhibited counter‐gradient gene flow. In total, 74.3% showed significant IBE patterns. This predominant IBE pattern of gene flow may have arisen directly through natural selection or reflect other adaptive and nonadaptive processes leading to nonrandom gene flow. It also precludes gene swamping as a widespread phenomenon. Implications for evolutionary processes and management under rapidly changing environments (e.g., climate change) are discussed.  相似文献   

12.
魏绍巍  黎茵 《生物工程学报》2011,27(12):1702-1710
植物磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase,PEPC,EC 4.1.1.31)是广泛存在的一种细胞质酶,催化磷酸烯醇式丙酮酸(PEP)和HCO3-生成草酰乙酸(OAA),后者可转化生成三羧酸循环的多种中间产物.PEPC在植物细胞中参与植物的光合碳同化等重要代谢途径,并且在不同组织中具有多种生理功能.PEPC同时也参与调控植物种子的营养物质合成与代谢过程,控制糖类物质流向脂肪酸合成或蛋白质合成途径.以下介绍了植物PEPC的种类、蛋白质结构特点及其在植物组织中的调控方式,并重点论述了PEPC在生物基因工程中的应用方面的进展,随着对其功能机制和应用研究的深入,将有助于植物PEPC在高产优质农作物育种、能源植物和工业微生物等的开发利用等方面得到更好的发展与应用.  相似文献   

13.
Al-Ahmad H  Galili S  Gressel J 《Planta》2005,222(2):372-385
Transgenic crops can interbreed with other crop cultivars or with related weeds, increasing the potential of the hybrid progeny for competition. To prevent generating competitive hybrids, we previously tested tobacco (Nicotiana tabacum L.) as a model for validating the transgenic mitigation (TM) concept using tandem constructs where a gene of choice is linked to mitigating genes that are positive or neutral to the crop, but deleterious to a recipient under competition. Here, we examine the efficacy of the TM concept at various ratios of transgenically mitigated tobacco in competition with the wild type tobacco in an ecological replacement series. The dwarf/herbicide-resistant TM transgenic plants cultivated alone under self-competition grew well and formed many more flowers than the tall wild type, which is an indication of greater reproductivity. In contrast to the wild type, TM flowering was almost completely suppressed in mixed cultures at most TM/wild type ratios up to 75% transgenic, as the TM plants were extremely unfit to reproduce. In addition, homozygous TM progeny had an even lower competitive fitness against the wild type than hemizygous/homozygous TM segregants. Thus, the TM technology was effective in reducing the risk of transgene establishment of intraspecific transgenic hybrids at different competitive levels, at the close spacing typical of weed populations.  相似文献   

14.
Modern agricultural technology and the introduction of new high-yielding varieties are largely eliminating the wide range of crop genetic diversity that has evolved during the five to ten thousand years since food plants were first domesticated. Related wild species are also on the decline because of new land use policies. These gene pools (or what is left of them) are generally spoken of as genetic resources, and are vitally needed in the creation of new crop varieties by plant breeders. Wild species and land races often furnish genes conferring resistance to diseases and pests and adaptation to environmental stresses which cannot be found in the modern crop varieties.
The study of genetic diversity of crops, its storage in gene banks or in natural reserves, its evaluation and enhancement, are briefly described. The genetic resources work of the Food and Agriculture Organisation of the United Nations (FAO) and other international agencies such as the International Board for Plant Genetic Resources (IBPGR) is outlined.  相似文献   

15.
Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops-to-crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level.  相似文献   

16.
One strategy to control mosquito-borne diseases, such as malaria and dengue fever, on a regional scale is to use gene drive systems to spread disease-refractory genes into wild mosquito populations. The development of a synthetic Medea element that has been shown to drive population replacement in laboratory Drosophila populations has provided encouragement for this strategy but has also been greeted with caution over the concern that transgenes may spread into countries without their consent. Here, we propose a novel gene drive system, inverse Medea, which is strong enough to bring about local population replacement but is unable to establish itself beyond an isolated release site. The system consists of 2 genetic components--a zygotic toxin and maternal antidote--which render heterozygous offspring of wild-type mothers unviable. Through population genetic analysis, we show that inverse Medea will only spread when it represents a majority of the alleles in a population. The element is best located on an autosome and will spread to fixation provided any associated fitness costs are dominant and to very high frequency otherwise. We suggest molecular tools that could be used to build the inverse Medea system and discuss its utility for a confined release of transgenic mosquitoes.  相似文献   

17.
Crop‐wild hybridization occurs in numerous plant species and could alter the genetic structure and evolutionary dynamics of wild populations. Studying crop‐derived alleles in wild populations is also relevant to assessing/mitigating the risks associated with transgene escape. To date, crop‐wild hybridization has generally been examined via short‐term studies, typically within a single generation, focusing on few traits or genetic markers. Little is known about patterns of selection on crop‐derived alleles over multiple generations, particularly at a genome‐wide scale. Here, we documented patterns of natural selection in an experimental crop × wild sunflower population that was allowed to evolve under natural conditions for two generations at two locations. Allele frequencies at a genome‐wide collection of SNPs were tracked across generations, and a common garden experiment was conducted to compare trait means between generations. These data allowed us to identify instances of selection on crop‐derived alleles/traits and, in concert with QTL mapping results, test for congruence between our genotypic and phenotypic results. We found that natural selection overwhelmingly favours wild alleles and phenotypes. However, crop alleles in certain genomic regions can be favoured, and these changes often occurred in parallel across locations. We did not, however, consistently observe close agreement between our genotypic and phenotypic results. For example, when a trait evolved towards the wild phenotype, wild QTL alleles associated with that trait did not consistently increase in frequency. We discuss these results in the context of crop allele introgression into wild populations and implications for the management of GM crops.  相似文献   

18.
19.
Insights on the evolution of a vegetatively propagated crop species   总被引:1,自引:1,他引:0  
Olsen KM  Schaal BA 《Molecular ecology》2007,16(14):2838-2840
The opportunity for gene flow between a vegetatively propagated crop and its wild relatives is expected to be much lower than for seed-propagated crops, since sexual reproduction in the crop occurs only infrequently. A study by Duputié and colleagues now demonstrates evidence of sexual reproduction between a vegetatively propagated crop and a closely related wild congener. Working in French Guiana, these workers have documented a hybrid zone arising from introgression between cassava (Manihot esculenta ssp. esculenta, Euphorbiaceae), which is propagated by stem cuttings, and wild Manihot populations growing in close proximity. Patterns of heterozygosity suggest that there are little-to-no barriers to reproduction between the crop and these wild populations. Previous work by these researchers has documented the importance of occasional sexual reproduction for the development of cassava varieties in traditional Amerindian farming systems. Taken together with their previous work, these new findings suggest that gene flow between wild Manihot populations and cassava plants could potentially play a much greater role in the crop's evolution than previously thought.  相似文献   

20.
魏松涛  迟伟  张立新 《植物学报》2008,25(5):516-525
高等植物根据其CO2同化方式的不同, 可分为C3植物、C4植物和CAM植物。由于C4植物特殊的光合作用方式, 其光合能力明显高于C3植物。然而, 大多数农作物都是C3植物。为了改善C3植物的光合能力, 人们试图通过转基因的方法来改造C3作物, 以提高主要农作物如水稻(Oryz a sativa)、小麦(Tri ticum aestivum)和大豆(Glycine max)等的光合生产力, 并在这些方面做了很多有益的尝试。该文主要综述了通过转基因方法改善碳循环能力的一些进展, 并对一些尚需深入研究的问题进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号