首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C2 (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD2 and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[1-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.  相似文献   

2.
Malaisse WJ  Willem R 《Biochimie》2004,86(2):119-125
When liver cells from either normal or hereditarily diabetic rats are exposed to (13)C-enriched D-fructose (10 mM) and unlabelled D-glucose (also 10 mM) in the presence of D(2)O, the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose is significantly lower than that from D-[2-(13)C]fructose. This coincides with a higher generation of (13)C-enriched L-lactate and L-alanine from D-[1-(13)C]fructose, as compared to D-[2-(13)C]fructose. In absolute terms, the mean paired difference in the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose versus D-[2-(13)C]fructose is not significantly different from the mean paired difference in the production of (13)C-enriched L-lactate and L-alanine from the same precursors, with an overall mean value of 7.01 +/- 1.59 micromol (n = 8; P < 0.005). It is proposed that these findings indicate isotopic discrimination at the phosphoglucoisomerase level between (12)C and (13)C for the carbon atom in position 1 (as compared to that in position 2) of D-fructose 6-phosphate.  相似文献   

3.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

4.
It was recently proposed that in rat pancreatic islets exposed to 8.3 mM D-glucose, alpha-D-glucose-6-phosphate undergoes enzyme-to-enzyme channelling between hexokinase isoenzyme(s) and phosphoglucoisomerase. To explore the identity of the hexokinase isoenzyme(s) involved in such a tunnelling process, the generation of 3HOH from the alpha- and beta-anomers of either D-[2-3H]glucose or D-[5-3H]glucose was now measured over 60 min incubation at 4 degrees C in pancreatic islets exposed only to 2.8 mM D-glucose, in order to decrease the relative contribution of glucokinase to the phosphorylation of the hexose. Under these experimental conditions, the ratio for 3HOH production from D-[2-3H]glucose/D-[5-3H]glucose at anomeric equilibrium (39.7 +/- 11.6%) and the beta/alpha ratios for the generation of 3HOH from either the D-[2-3H]glucose anomers (70.9 +/- 12.6%) or the D-[5-3H]glucose anomers (59.6 +/- 12.4%) indicated that a much greater fraction of alpha-D-glucose-6-phosphate escapes from the process of enzyme-to-enzyme channelling in the islets exposed to 2.8 mM, rather than 8.3 mM D-glucose. These findings suggest, therefore, that the postulated process of enzyme-to-enzyme channelling involves mainly glucokinase.  相似文献   

5.
This study aims at establishing the contribution of alpha- and beta-D-glucose to the total generation of (3)HOH by rat pancreatic islets exposed to D-[2 - (3)H]glucose or D-[5 - (3)H] glucose at anomeric equilibrium. The islets were incubated for 60 min at 4 degrees C in the presence of equilibrated D-glucose (2.8 and 8.3 mM) mixed with tracer amounts of either alpha- or beta-D-glucose labelled with tritium on either the C (2) or C (5) of the hexose. Relative to their respective concentrations, (3)HOH generation from the anomers labelled with tritium on the C (2) or C (5) of the hexose provided beta/alpha ratios comparable to those previously found at both 2.8 and 8.3 mM, when the islets were exposed to each anomer separately. The relative contributions of each anomer to the total generation of (3)HOH was also close to the theoretical values derived from mathematical models for the catabolism of D-glucose at anomeric equilibrium in rat islets at both 2.8 and 8.3 mM and in the case of both D-[2 - (3)H]glucose and D-[5 - (3)H]glucose. Thus, even in islets exposed to D-glucose at anomeric equilibrium, the metabolic fate of alpha-D-glucose differs vastly from that of beta-D-glucose, the enzyme-to-enzyme channelling between hexokinase isoenzymes, especially glucokinase, and phosphoglucoisomerase being restricted to alpha-D-glucose 6-phosphate.  相似文献   

6.
It was recently proposed that alpha-D-glucose 6-phosphate may undergo enzyme-to-enzyme channelling between glucokinase and phosphoglucoisomerase in rat pancreatic islets. The present study aims at exploring whether a different situation prevails in cells deprived of glucokinase, namely in erythrocytes. At anomeric equilibrium, the ratio between D-[2-3H]glucose and D-[5-3H]glucose conversion to 3HOH was lower in rat erythrocytes incubated for 60 min at 4 degrees C in the presence of 2.8 mM, rather than 8.3 mM, D-glucose. This coincided with both a greater relative increase in beta-D-[5-3H]glucose, as compared to alpha-D-[5-3H]glucose, conversion to 3HOH and an increase in the beta/alpha ratio for 3HOH generation from D-[5-3H]glucose in response to an increase in the anomeric concentration from 2.8 to 8.3 mM, the suppression of the difference between the beta/alpha ratios for 3HOH generation from D-[2-3H]glucose and D-[5-3H]glucose in the erythrocytes incubated at 8.3 mM, as distinct from 2.8 mM, alpha- and beta-D-glucose, and a [2-3H]/[5-3H] ratio for 3HOH generation lower than unity in erythrocytes exposed to alpha-D-glucose but not significantly different from unity in the presence of beta-D-glucose. These findings emphasize the relevance of alpha-D-glucose 6-phosphate channelling between hexokinase and phosphoglucoisomerase as a determinant of the difference between D-[2-3H]glucose and D-[5-3H]glucose conversion to 3HOH, and reveal that the regulation of such a tunnelling process by the concentration of the D-glucose represents, in rat erythrocytes, a mirror image of that observed in rat pancreatic islets. The regulation of this process thus tightly depends on the identity of the hexokinase enzyme mainly responsible for the phosphorylation of D-glucose in distinct cell types.  相似文献   

7.
The reversible conversion between D-glucose 6-phosphate and D-fructose 6-phosphate catalyzed by yeast phosphoglucoisomerase was studied by phase sensitive two-dimensional 13C-[1H] EXSY NMR spectroscopy at 150.869 and 125.759 MHz, using 13C-enriched substrates in the C2 position of the D-hexose 6-phosphates. The shape of the build-up curves of the cross-peaks associated with the 13C2 resonances of the alpha- and beta-anomers of both D-[2-13C]glucose 6-phosphate and D-[2-13C]fructose 6-phosphate reveals that phosphoglucoisomerase selectively catalyzes the reversible conversion between alpha-D-[2-13C]glucose 6-phosphate and beta-D-[2-13C]fructose 6-phosphate. Quantitative analysis of the build-up curves by three different methods allowed us to conclude that phosphoglucoisomerase not only selectively channels the latter isomerization but also considerably accelerates the anomerization of both D-hexose 6-phosphates. The rate constants of anomerization were indeed much higher in the presence than in the absence of enzyme. The major finding in the present study consists in the anomeric specificity of phosphoglucoisomerase toward the beta-anomer of D-fructose 6-phosphate both as a substrate and a product, contrary to previous proposals. This finding supports recent evidence suggesting the direct channelling of beta-D-fructose 6-phosphate from phosphoglucoisomerase to phosphofructokinase.  相似文献   

8.
The anomeric specificity of D-glucose metabolism was investigated in rat adipocytes exposed for 60 min at 8 degrees C to pure alpha- or beta-D-glucose or to equilibrated D-glucose. The rate of D-[5-3H]glucose utilization was higher with alpha- than beta-D-glucose. However, as judged from the oxidation of D-[1-14C]glucose and D-[6-14C]glucose anomers, the fraction of D-glucose catabolism occurring via the pentose cycle was higher with beta- than alpha-D-glucose. In the presence of equilibrated D-glucose, the utilization of alpha-D-[5-3H]glucose and the oxidation of both alpha-D-[1-14C]glucose and alpha-D-[6-14C]glucose were higher, relative to the anomer concentration, than the corresponding values for beta-D-glucose. It is concluded that the anomeric specificity of D-glucose metabolism is operative in adipocytes, even when they are exposed to equilibrated D-glucose.  相似文献   

9.
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase.  相似文献   

10.
The fate of unlabelled D-glucose and D-[2-3H]glucose in pancreatic islets was simulated taking into account experimental values for glycolytic flux, intracellular concentration of D-glucose 6-phosphate and phosphoglucoisomerase activity. The model, which also takes into account the isotopic discrimination in velocity and intramolecular transfer of tritium between D-[2-3H]glucose 6-phosphate and D-[1-3H]fructose 6-phosphate in the reaction catalyzed by phosphoglucoisomerase, revealed that the predicted generation of 3HOH from D-[2-3H]glucose was much higher than the true experimental value. Such a discrepancy is reinforced by the consideration that the generation of 3HOH from D-[2-3H]glucose in islet cells is not solely attributable to the phosphoglucoisomerase-catalyzed detritiation of hexose 6-phosphates metabolized in the glycolytic pathway. In order to reconcile experimental and theoretical values for 3HOH production, it was found necessary to postulate enzyme-to-enzyme tunnelling of hexose 6-phosphates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. It is proposed that such a tunnelling may favour the anomeric specificity of D-glucose metabolism in islet cells, by restricting the anomerization of hexose 6-phosphates.  相似文献   

11.
The metabolism of D-glucose displays anomeric specificity in rat pancreatic islets. The aim of the present report is to investigate whether such a situation implies enzyme-to-enzyme tunnelling of metabolites in the early steps of glycolysis. For such a purpose, the modelling of alpha- and beta-D-glucose catabolism, itself based on available information concerning both the utilisation of these two anomers and the intrinsic properties of phosphoglucoisomerase, was first examined. According to a theoretical model with enzyme-to-enzyme channelling, the generation of 3HOH from D-[2-3H]glucose should be higher in islets exposed to beta-D-glucose rather than alpha-D-glucose, whilst the opposite situation should prevail in the case of D-[5-3H]glucose conversion to 3HOH. Experimental data collected in rat islets incubated for 60 min at 4 degrees C in the presence of either alpha- or beta-D-glucose mixed with tracer amounts of either alpha- or beta-D-[2- 3H]glucose and alpha- or beta-D-[5-3H]glucose indicate that the beta/alpha ratio for D-[2-3H]glucose conversion to 3HOH is indeed higher than the beta/alpha ratio for D-[5-3H]glucose conversion to 3HOH. These findings are consistent with the postulated enzyme-to-enzyme tunnelling of glycolytic intermediates between hexokinase isoenzyme(s), phosphoglucoisomerase and, possibly, phosphofructokinase.  相似文献   

12.
1. In human erythrocytes, alpha-D-[U-14C]glucose is more efficiently oxidized than beta-D-[U-14C]glucose at a low concentration of the hexose (0.1 mM), but not so at higher glucose concentrations. 2. This unexpected situation may be attributable in part to the lower Km of hexokinase for alpha- than beta-D-glucose, this difference in affinity compensating for the higher maximal velocity found with the beta- rather than alpha-anomer. 3. A contributive role for aldose reductase in the anomeric control of D-glucose 6-phosphate circulation in the pentose phosphate pathway should not be ruled out, since aldose reductase inhibitors decrease the production of 14CO2 by erythrocytes exposed to D-[U-14C]glucose. 4. Nevertheless, the essential role of hexokinase in such an anomeric control is supported by the finding that, in the presence of menadione, which augments considerably D-[U-14C]glucose oxidation but fails to affect D-[5-3H]glucose utilization, the anomeric alpha/beta ratio in 14CO2 production from D-[U-14C]glucose follows, at increasing concentrations of the hexose, the same pattern as that found for its phosphorylation.  相似文献   

13.
1. D-Glucose (0.5-16.7 mM) preferentially stimulates aerobic glycolysis and D-[3,4-14C]glucose oxidation, relative to D-[5-3H]glucose utilization in rat pancreatic islets, the concentration dependency of such a preferential effect displaying a sigmoidal pattern. 2. Inorganic and organic calcium antagonists, as well as Ca2+ deprivation, only cause a minor decrease in the ratio between D-[3,4-14C]glucose oxidation and D-[5-3H]glucose utilization in islets exposed to a high concentration of the hexose (16.7 mM). 3. Non-glucidic nutrient secretagogues such as 2-aminobicyclo[2,2,1]heptane-2-carboxylate (BCH), 2-ketoisocaproate and 3-phenylpyruvate fail to stimulate aerobic glycolysis and D-[3,4-14C]glucose oxidation in islets exposed to 6.0 mM D-glucose. Nevertheless, BCH augments [1-14C]pyruvate and [2-14C]pyruvate oxidation. 4. The glucose-induced increment in the paired ratio between D-[3,4-14C]glucose oxidation and D-[5-3H]glucose utilization is impaired in the presence of either cycloheximide or ouabain. 5. These findings suggest that the preferential effect of D-glucose upon aerobic glycolysis and pyruvate decarboxylation is not attributable solely to a Ca(2+)-induced activation of FAD-linked glycerophosphate dehydrogenase and/or pyruvate dehydrogenase, but may also involve an ATP-modulated regulatory process.  相似文献   

14.
Based on experimental data, a model is proposed for the interconversion of either unlabelled hexose phosphates or D-[2-3H]glucose 6-phosphate and D-[1-3H]fructose 6-phosphate in the reaction catalyzed by phosphoglucoisomerase. This model takes into account the known differences in maximal velocity and affinity for each substrate, the intramolecular transfer of tritium between C1 and C2, and the isotopic discrimination between unlabelled and tritiated esters. This model reveals that, in a close system characterized by the progressive detritiation of hexose phosphates, the concentration ratio of D-glucose 6-phosphate to D-fructose 6-phosphate is much higher with the tritiated than unlabelled esters, a paradoxical increase in the specific radioactivity of D-glucose 6-phosphate above its initial value being even observed during the initial period of exposure of D-[2-3H]glucose 6-phosphate to phosphoglucoisomerase. The extension of this model to an open system may be essential for the correct interpretation of radioactive data collected in intact cells exposed to D-[2-3H]glucose.  相似文献   

15.
Aldolase and triose phosphate isomerase both display strict specificity towards the enantiomers of [1-3H]glycerone 3-phosphate. The enantiomer generated from D-[1-3H]glyceraldehyde 3-phosphate produces 3HOH in the aldolase reaction, whilst the other enantiomer generated from D-[3-3H]fructose 1,6-bisphosphate is solely detritiated in the reaction catalyzed by triose phosphate isomerase. Advantage was taken of such a specificity to assess, in human erythrocytes exposed to either D-[3-3H]glucose or D-[3,4-3H]glucose, the extent of D-glyceraldehyde 3-phosphate sequential conversion to glycerone 3-phosphate and D-fructose 1,6-bisphosphate, relative to net glycolytic flux. At 37 degrees C and in the presence of 5.6 mM D-glucose, only 55% of the metabolites of D-[4-3H]glucose underwent detritiation in the reactions catalyzed by triose phosphate isomerase and aldolase. Such a percentage was further decreased at low temperature (8 degrees C) or lower concentrations of D-glucose (0.2 and 1.0 mM). However, when the erythrocytes were exposed to menadione, the increase in 3HOH production from either D-[3-3H]glucose or D-[3,4-3H]glucose indicated that the majority of the 3H atoms initially located on the C4 of D-glucose were recovered as 3HOH upon circulation through the pentose phosphate pathway. These findings suggest that, under physiological conditions, a large fraction of D-glyceraldehyde 3-phosphate generated from exogenous D-glucose may undergo enzyme-to-enzyme channelling in the glycolytic pathway.  相似文献   

16.
The relationship between glycolysis and respiration was examined in a model of pancreatic B-cell dysfunction, namely in tumoral insulin-producing cells of the RINm5F line. A rise in D-glucose concentration from 2.8 to 16.7 mM increased the utilization of D-[5-3H]glucose and production of [14C]lactate from D-[U-14C]glucose, whereas decreasing the oxidation of either D-[U-14C]glucose or D-[6-14C]glucose. Whereas 2.8 mM D-glucose augmented O2 uptake above basal value, a further rise in D-glucose concentration to 16.7 mM decreased respiration, which remained higher, however, than basal value. Whether at low or high concentration, D-glucose exerted a pronounced sparing action upon the oxidation of endogenous nutrients in cells prelabeled with either L-[U-14C]glutamine or [14C]palmitate and, nevertheless, augmented above basal value the rate of lipogenesis, ATP/ADP content, adenylate charge, and cytosolic NADH/NAD+ and NADPH/NADP+ ratios. The generation of ATP resulting from the catabolism of either exogenous D-glucose or endogenous nutrients was not affected by the rise in hexose concentration from 2.8 to 16.7 mM. Thus, in sharp contrast with the situation found in normal islet cells, a rise in D-glucose concentration, instead of stimulating mitochondrial oxidative events, caused, through a Crabtree effect, inhibition of hexose oxidation and O2 consumption in tumoral islet cells.  相似文献   

17.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

18.
In tumoral islet cells (RINm5F line) the phosphorylation of D-fructose is catalyzed by hexokinase rather than fructokinase. Fructose 6-phosphate appears to be preferentially channelled into the pentose cycle, as suggested by a ratio of D-[1-14C]fructose/D-[U-14C]fructose oxidation close to 2.7, the failure to generate 14C-labelled lactate from D-[1-14C]fructose and a poor metabolic response to menadione. When the islet cells are exposed to both D-fructose and D-glucose, however, the metabolism of the former hexose is dramatically modified, fructose 6-phosphate being now formed at a lower rate and preferentially channelled into the glycolytic pathway. These findings illustrate the existence of regulatory steps in fructose catabolism located distally to its site of phosphorylation.  相似文献   

19.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

20.
Zhang Y  Courtois P  Sener A  Malaisse WJ 《Biochimie》2004,86(12):913-918
The anomeric specificity of D-[U-14C]glucose incorporation into glycogen in rat hemidiaphragms was investigated. For this purpose, the hemidiaphragms were preincubated for 30 min at 37 degrees C and then incubated for 5 min at the same temperature in the presence of alpha- or beta-D-[U-14C]glucose. The concentrations of D-glucose (5.6 or 8.8 mM) and insulin (0 or 10 mU/ml) were identical during the preincubation and incubation periods. The incubation medium was prepared in D2O/H2O (3:1, v/v) in order to delay the interconversion of the D-glucose anomers. In addition to glycogen labelling, the output of radioactive acidic metabolites was also measured. Insulin caused a preferential stimulation of glycogen labelling relative to glycolysis. Such was not the case in response to a rise in D-glucose concentration. At 5.6 mM D-glucose and whether in the presence or absence of insulin, both glycogen labelling and glycolysis were lower with alpha-D-glucose than with beta-D-glucose suggesting a higher rate of beta-D-glucose than alpha-D-glucose transport across the plasma membrane. A mirror image was found at 8.8 mM D-glucose, especially in the absence of insulin. At this close-to-physiological hexose concentration, insulin lowered the alpha/beta ratio for glycogen labelling. On the contrary, the rise in D-glucose concentration increased such a ratio. Since such a rise is probably little affected by any possible anomeric difference in D-glucose transport across the plasma membrane, the present results strongly suggest that the intracellular factors regulating net glycogen synthesis, as well as glycolytic flux, display obvious preference for alpha-D-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号