首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A series of meperidine analogues was synthesized and the binding affinities for the dopamine and serotonin transporters were determined. The substituents on the phenyl ring greatly influenced the potency and selectivity of these compounds for the transporter binding sites. In general, meperidine (3) and its analogues were more selective for serotonin transporter binding sites and the esters 9 were more potent than the corresponding nitriles 8. The 3,4-dichloro derivative 9e was the most potent ligand of the series for dopamine transporter binding sites while the 2-naphthyl derivative 9g exhibited the most potent binding affinity and was highly selective for serotonin transporter binding sites.  相似文献   

2.
Several analogues of 5-hydroxytryptophan were tested for their ability to inhibit the binding of serotonin to serotonin-binding protein (SBP), a protein found within serotonergic neurons which has a high affinity for serotonin. An N-substituted dipeptide, N-acetyl-5-hydroxytryptophan-5-hydroxytryptophan amide, was found to be an inhibitor of this binding. The inhibition (50% at 1.0 μM) was specific, since it did not affect other known sites of serotonin binding. The binding of serotonin to its membrane receptor was not affected by the dipeptide (up to 10 μM). Uptake of serotonin by synaptosomes was only slightly affected (9% at 10 μM), and aromatic-L-amino-acid carboxy-lyase(EC 4.1.1.28) and amine: oxygen oxidoreductase (deaminating) (flavin-containing) (EC 1.4.3.4) were not inhibited (10 μM and 5 mM respectively), The peptide was not hydrolyzed by honiogenates of brain or myenteric plexus. The 14C-labelled dipeptide was shown to be taken up by synaptosomes. However, the uptake of the peptide was not affected either by drugs that inhibit serotonin uptake or by serotonin itself although the uptake was abolished by excess 5-hydroxytryptophan. Intraventricular injection of N-acetyl dipeptide caused a biphasic effect depending on dose. Lower doses (10nmol) induced a decrease in serotonin brain levels (40%). Higher doses (300 nmol) caused a 95% increase in serotonin levels. It is suggested that 5-hydroxytryptophyl peptides may be used as potent specific inhibitors of SBP, a storage compartment of serotonin.  相似文献   

3.
Abstract: Methylphenidate promotes a dose-dependent behavioral profile that is very comparable to that of amphetamine. Amphetamine increases extracellular norepinephrine and serotonin, in addition to its effects on dopamine, and these latter effects may play a role in the behavioral effects of amphetamine-like stimulants. To examine further the relative roles of dopamine, norepinephrine, and serotonin in the behavioral response to amphetamine-like stimulants, we assessed extracellular dopamine and serotonin in caudate putamen and norepinephrine in hippocampus in response to various doses of methylphenidate (10, 20, and 30 mg/kg) that produce stereotyped behaviors, and compared the results with those of a dose of amphetamine (2.5 mg/kg) that produces a level of stereotypies comparable to the intermediate dose of methylphenidate. The methylphenidate-induced changes in dopamine and its metabolites were consistent with changes induced by other uptake blockers, and the magnitude of the dopamine response for a behaviorally comparable dose was considerably less than that with amphetamine. Likewise, the dose-dependent increase in norepinephrine in response to methylphenidate was also significantly less than that with amphetamine. However, in contrast to amphetamine, methylphenidate had no effect on extracellular serotonin. These results do not support the hypothesis that a stimulant-induced increase in serotonin is necessary for the appearance of stereotyped behaviors.  相似文献   

4.
Abstract: Two series of serotonin analogues, in which the side chain amino group is constrained in the gauche or trans conformation, were utilized to study the preferred conformation of serotonin for interaction with two different neuronal sites. 6-Hydroxytetrahydro-β-carboline and 6-hydroxy-3-aminotetrahydrocarbazole were found to be potent inhibitors of serotonin uptake into hypothalamic synaptosomes, with IC50 values of 0.13 μM for each analogue. The type of inhibition, as determined by Dixon plots, was found to be competitive, with Ki's of 3.0 × 10−8 M and 4.6 × 10−8 M for the β-carboline and carbazole derivatives, respectively. Methoxylation or lack of a hydroxy group at the 6 position of the carbazole derivative did not alter inhibitory potency, while methoxy or benzyloxy substitution decreased potency 22- to 326-fold. The serotonin analogues were 20 to 30 times less potent in inhibiting the synaptosomal transport of the catecholamines. With regard to [3H]serotonin binding to membranes obtained from brain homogenates, both analogues exhibited poor affinity compared with the transmitter. However, the β-carboline derivative was three times as potent as the carbazole analogue. These findings and earlier ones with regard to the effect of the serotonin analogues on brain monoamine oxidase activity support the idea that serotonin analogues interact differentially with the three different serotonergic sites examined.  相似文献   

5.
The serotonin transporter (SERT) shapes serotonergic neurotransmission by retrieving its eponymous substrate from the synaptic cleft. Ligands that discriminate between SERT and its close relative, the dopamine transporter DAT, differ in their association rate constant rather than their dissociation rate. The structural basis for this phenomenon is not known. Here we examined the hypothesis that the extracellular loops 2 (EL2) and 4 (EL4) limit access to the ligand-binding site of SERT. We employed an antibody directed against EL4 (residues 388–400) and the antibody fragments 8B6 scFv (directed against EL2 and EL4) and 15B8 Fab (directed against EL2) and analyzed their effects on the transport cycle of and inhibitor binding to SERT. Electrophysiological recordings showed that the EL4 antibody and 8B6 scFv impeded the initial substrate-induced transition from the outward to the inward-facing conformation but not the forward cycling mode of SERT. In contrast, binding of radiolabeled inhibitors to SERT was enhanced by either EL4- or EL2-directed antibodies. We confirmed this observation by determining the association and dissociation rate of the DAT-selective inhibitor methylphenidate via electrophysiological recordings; occupancy of EL2 with 15B8 Fab enhanced the affinity of SERT for methylphenidate by accelerating its binding. Based on these observations, we conclude that (i) EL4 undergoes a major movement during the transition from the outward to the inward-facing state, and (ii) EL2 and EL4 limit access of inhibitors to the binding of SERT, thus acting as a selectivity filter. This insight has repercussions for drug development.  相似文献   

6.
Methylphenidate (MPD) was found to inhibit competitively the striatal dopamine transporter (DAT) and bind at sites on the DAT in common with both cocaine (a non-substrate site ligand) and amphetamine (a substrate site ligand). Some methylphenidate analogues modified on the aromatic ring and/or at the nitrogen were tested to determine whether the profile of inhibition could be altered. None was found to stimulate the release of dopamine in the time frame (< or = 60 s) of the experiments conducted, and each of the analogues tested was found to noncompetitively inhibit the transport of dopamine. It was found that halogenating the aromatic ring with chlorine (threo-3,4-dichloromethylphenidate hydrochloride; compound 1) increased the affinity of MPD to inhibit the transport of dopamine. A derivative of MPD with simultaneous, single methyl group substitutions on the phenyl ring and at the nitrogen (threo-N-methyl-4-methylphenidate hydrochloride; compound 2) bound at a site in common with MPD. A benzyl group positioned at the nitrogen (threo-N-benzylmethylphenidate hydrochloride; compound 3) imparted properties to the inhibitor in which binding at substrate and non-substrate sites could be distinguished. This analogue bound at a mutually interacting site with that of methylphenidate and had a K(int) value of 4.29 microM. Furthermore, the N-substituted analogues (compounds 2 and 3), although clearly inhibitors of dopamine transport, were found to attenuate dramatically the inhibition of dopamine transport by amphetamine, suggesting that the development of an antagonist for substrate analogue drugs of abuse may be possible.  相似文献   

7.
Serotonin at low micromolar concentrations inhibited binding of two [125I]-labeled muramyl peptides to resident mouse peritoneal cells and to a macrophage-derived cell line, PU5-1.8-F7. Binding of [3H]serotonin was inhibited in parallel fashion. Overnight incubation with serotonin or muramyl peptide enhanced the release of superoxide by both types of cells when later stimulated with phorbol myristate acetate. Serotonin antagonists decreased binding of muramyl peptide and serotonin and diminished the subsequent enhancement of superoxide release. A cell line variant lacking detectable binding sites for muramyl peptide was far less responsive (superoxide release) than the parent line, to either drug. The data are consistent with sharing of a common set of receptors on the macrophage by muramyl peptide and serotonin and with involvement of these receptors in enhancing superoxide release.  相似文献   

8.
Schmitt KC  Reith ME 《PloS one》2011,6(10):e25790
Modafinil is a mild psychostimulant with pro-cognitive and antidepressant effects. Unlike many conventional stimulants, modafinil has little appreciable potential for abuse, making it a promising therapeutic agent for cocaine addiction. The chief molecular target of modafinil is the dopamine transporter (DAT); however, the mechanistic details underlying modafinil's unique effects remain unknown. Recent studies suggest that the conformational effects of a given DAT ligand influence the magnitude of the ligand's reinforcing properties. For example, the atypical DAT inhibitors benztropine and GBR12909 do not share cocaine's notorious addictive liability, despite having greater binding affinity. Here, we show that the binding mechanism of modafinil is different than cocaine and similar to other atypical inhibitors. We previously established two mutations (W84L and D313N) that increase the likelihood that the DAT will adopt an outward-facing conformational state--these mutations increase the affinity of cocaine-like inhibitors considerably, but have little or opposite effect on atypical inhibitor binding. Thus, a compound's WT/mutant affinity ratio can indicate whether the compound preferentially interacts with a more outward- or inward-facing conformational state. Modafinil displayed affinity ratios similar to those of benztropine, GBR12909 and bupropion (which lack cocaine-like effects in humans), but far different than those of cocaine, β-CFT or methylphenidate. Whereas treatment with zinc (known to stabilize an outward-facing transporter state) increased the affinity of cocaine and methylphenidate two-fold, it had little or no effect on the binding of modafinil, benztropine, bupropion or GBR12909. Additionally, computational modeling of inhibitor binding indicated that while β-CFT and methylphenidate stabilize an "open-to-out" conformation, binding of either modafinil or bupropion gives rise to a more closed conformation. Our findings highlight a mechanistic difference between modafinil and cocaine-like stimulants and further demonstrate that the conformational effects of a given DAT inhibitor influence its phenomenological effects.  相似文献   

9.
Two azide analogues of ketanserin (6- and 7-azido-3-[2- [4-(4-fluorobenzoyl)-1-piperidinyl]ethyl]-2, 4(1H,3H)-quinazolinedione) were synthesized and tested as possible photoaffinity probes for serotonin-S2 and histamine-H1 receptors. In reversible binding experiments, the azides showed high affinity for both receptor types. When membrane preparations were incubated with nanomolar concentrations of 7-azidoketanserin and subsequently irradiated with UV light, both serotonin and histamine receptors became irreversibly blocked. This irreversible binding was dependent on azide concentrations and time of irradiation and did not change in the presence of the scavenger p-aminobenzoic acid. In contrast, irreversible blockade at low concentrations of 6-azidoketanserin was only obtained for histamine receptors. However, this blockade was abolished by addition of the scavenger p-aminobenzoic acid indicating that it was not due to a real photoaffinity mechanism. In the rat prefrontal cortex, irreversible blocking of serotonin receptors with 7-azidoketanserin could be inhibited by serotonin agonists or antagonists but not by histaminergic compounds. On the contrary, in the guinea pig cerebellum, inactivation of histamine receptors could be inhibited by histamine antagonists and histamine itself but not by serotonergic compounds. This provides a way for differential photolabeling of either of these receptors.  相似文献   

10.
A major problem with the selective serotonin reuptake inhibitors (SSRIs) is the delayed onset of action. A reason for that may be that the initial SSRI-induced increase in serotonin levels activates somatodendritic 5-HT(1A) autoreceptors, causing a decrease in serotonin release in major forebrain areas. It has been suggested that compounds combining inhibition of the serotonin transport protein with antagonistic effects on the 5-HT(1A) receptor will shorten the onset time. The anxiolytic drug buspirone is known as 5-HT(1A) partial agonist. In the present work, we are studying the inhibition of the serotonin transporter protein by a series of buspirone analogues by molecular modelling and by experimental affinity measurements. Models of the transporter protein were constructed using the crystal structure of the Escherichia coli major facilitator family transporter-LacY and the X-ray structure of the neurotransmitter symporter family (NSS) transporter-LeuT(Aa) as templates. The buspirone analogues were docked into both SERT models and the interactions with amino acids within the protein were analyzed. Two putative binding sites were identified on the LeuT(Aa) based model, one suggested to be a high-affinity site, and the other suggested to be a low-affinity binding site. Molecular dynamic simulations of the LacY based model in complex with ligands did not induce a helical architecture of the LacY based model into an arrangement more similar to that of the LeuT(Aa) based model.  相似文献   

11.
Kang M  Chifotides HT  Dunbar KR 《Biochemistry》2008,47(8):2265-2276
The 2D NMR analysis in solution of the DNA duplex d(CTCTC*A*ACTTCC).d(GGAAGTTGAGAG) binding to the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+ showed that an unprecedented intrastrand adduct, dsII, is formed with the dirhodium unit cross-linking in the major groove residues C5 and A6 (indicated with asterisks), also corroborated by enzyme digestion studies. Formation of the dirhodium complex dsII destabilizes significantly the duplex as indicated by the substantial decrease in its melting temperature (DeltaTm = -22.9 degrees C). The reduced thermal stability of dsII is attributed to the decreased stacking of the bases and the complete disruption and/or weakening of the hydrogen bonds within the base pairs in the immediate vicinity of the metalation site (C5.G20 and A6.T19), but the effects due to the metal binding are more severe for the base pairs in the 5' direction to the lesion site. The NMR spectroscopic data indicate that Watson-Crick hydrogen bonding is completely disrupted for the C5.G20 site and considerably weakened for A6.T19. In dsII, the bases C5 and A6 bind to eq positions of the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+, which retains one monodentate and two bridging acetate groups, presumably due to steric reasons. Binding of A6 takes place via N7, whereas binding of the C5 base takes place via the exocyclic N4 site, resulting in the anti-cytosine rotamer with respect to site N3 in its metal-stabilized rare iminooxo form.  相似文献   

12.
A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT(3A) receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT(3A)R is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.  相似文献   

13.
A series of 3-[2-(diarylmethoxyethylidene)]-8-alkylaryl-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine and serotonin transporters. The 8-phenylpropyl analogues 8a (K(i)=4.1 nM) and 8b (K(i)=3.7 nM) were the most potent compounds of the series with binding affinities 3 times greater than GBR-12909. In addition, 8a (SERT/DAT=327) was over 300-fold more selective for the dopamine transporter than the serotonin transporter.  相似文献   

14.
The effects of acetylcholine analogues, serotonin and catecholamines on ion transport were studied in both the middle and the posterior intestine of Anguilla anguilla, mounted in an Ussing chamber, with the aim of understanding whether these regulators affect different mechanisms in the different tracts. In the middle intestine, acetylcholine analogues and serotonin decreased the serosa negative transepithelial potential and short-circuit current without altering the transepithelial resistance; catecholamines reversed the inhibitory effects of both regulators. Similar opposite effects were produced by both the acetylcholine analogues and noradrenalin in the posterior intestine. However, the lowering of the short-circuit current elicited by serotonin was paralleled by the decrease of the transepithelial resistance, whilst noradrenalin had the opposite effects on both parameters. These observations, together with the results of experiments performed by measuring the dilution potential in the control condition and in the presence of either serotonin or serotonin plus noradrenalin, led us to hypothesize that serotonin increases the anion conductance of the paracellular pathway while noradrenalin decreases it. In both the middle and posterior intestine, these regulators probably affect transcellular transport mechanisms by acting on the Na-K-Cl transporter; both acetycholine and serotonin decrease its activity while noradrenalin increases it. Accepted: 22 May 1999  相似文献   

15.
J A Clemens  R W Fuller 《Life sciences》1979,24(22):2077-2081
In the present study we compared the ability of amphetamine and methylphenidate to antagonize the elevation of serum prolactin produced by reserpine because of the differences in the actions of amphetamine and methylphenidate on brain dopamine turnover. Groups of male rats were treated with either methylphenidate (10 mg/kg) or amphetamine (5 mg/kg) alone or in combination with reserpine (5 mg/kg). The reserpine treatment was given 4 hours before methylphenidate or amphetamine, and the rats were killed 5 hours after reserpine. Neither amphetamine nor methylphenidate alone was able to suppress serum prolactin. Amphetamine but not methylphenidate was able to block the increase of serum prolactin in response to reserpine. Amphetamine lowered brain DOPAC in control and reserpine-treated rats, but methylphenidate elevated brain DOPAC in control rats and had no effect in reserpine-treated rats. These results indicate that the methylphenidate group of CNS stimulants can be differentiated on the basis of their neuroendocrine effects from the amphetamine group of stimulants.  相似文献   

16.
Novel Psychoactive Drugs (NPD) can be sold without restriction and are often synthetic analogues of controlled drugs. The tryptamines are an important class of NPD as they bind to the various serotonin (5-HT) receptor subtypes and cause psychosis and hallucinations that can lead to injury or death through misadventure. Here we report on the structure elucidation and receptor binding profiles of two widely marketed tryptamine-derived NPDs, namely alpha-methyl-tryptamine and 5-methoxy-N,N-diallyl-tryptamine.  相似文献   

17.
The interaction of purified bovine liver MAO B with the benzylamine analogues N,N-dimethylbenzylamine and alpha-methylbenzylamine has been investigated. Both classes of analogues are competitive inhibitors of benzylamine oxidase activity. The K(i) values were determined for nine different para-substituted N, N-dimethylbenzylamine analogues. Analysis of the binding affinities demonstrate the deprotonated forms of the tertiary amines are preferentially bound to MAO B and the affinity decreases with increasing van der Waals volume of the para-substituent. The correlation for this relation is:Log K(i)=-0.97+/-(0.28)sigma+(0. 75+/-0.11)(0.1xV(w))-4.24+/-(0.16)alpha-Methyl benzylamine analogues are also found to be competitive inhibitors of MAO B-catalyzed benzylamine oxidation. Similar K(i) values were determined using either the S or R stereoisomers. Analysis of the binding affinities of five para-substituted alpha-methylbenzylamine analogues to MAO B shows the deprotonated form also to be preferentially bound and the affinity is marginally increased with increasing van der Waals volume of the para-substituent:Log K(i)=-0.71sigma-(0.32)(0. 1xV(w))-3.50Comparison of these data with that previously published for para-substituted benzylamine binding to MAO B (Walker and Edmondson, Biochemistry 33 (1994) 7088-7098) demonstrates that these benzylamine analogues exhibit differing modes of binding to the active site of MAO B. The presence of an electronic substituent effect in the binding of these two classes of analogues compared with the lack of an observable electronic effect in the binding of benzylamine to MAO B is consistent with the proposal that orientation of the benzyl ring of the bound substrate is responsible for the absence of an electronic substituent effect on the rate of the reductive half reaction (Miller and Edmondson, Biochemistry 38 (1999) 13670-13683).  相似文献   

18.
J. Neurochem. (2012) 122, 1054-1064. ABSTRACT: Concomitant therapies combining psychostimulants such as methylphenidate and selective serotonin reuptake inhibitors (SSRIs) are used to treat several mental disorders, including attention-deficit hyperactivity disorder/depression comorbidity. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone induces gene regulation that mimics partly effects of cocaine, consistent with some addiction liability. We previously showed that the SSRI fluoxetine potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate?+?fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers. Results demonstrate that fluoxetine (5?mg/kg) potentiates methylphenidate (5?mg/kg)-induced expression of substance P and dynorphin, markers for direct pathway neurons. In contrast, no drug effects on the indirect pathway marker enkephalin were found. Because methylphenidate alone has minimal effects on dynorphin, the potentiation of dynorphin induction represents a more cocaine-like effect for the drug combination. On the other hand, the lack of an effect on enkephalin suggests a greater selectivity for the direct pathway compared with psychostimulants such as cocaine. Overall, the fluoxetine potentiation of gene regulation by methylphenidate occurs preferentially in sensorimotor striatal circuits, similar to other addictive psychostimulants. These results suggest that SSRIs may enhance the addiction liability of methylphenidate.  相似文献   

19.
High affinity [3H]imipramine binding, endogenous levels of serotonin and noradrenaline, and serotonin uptake were determined in brain regions of rats with selective destruction of serotonergic neurons by 5,7-dihydroxytryptamine (5,7-DHT), of adrenergic neurons by 6-hydroxydopamine (6-OHDA), and of rats treated with reserpine. Neonatal treatment with 5,7-DHT resulted in a significant decrease of both serotonin levels and density (Bmax) of high affinity [3H]imipramine binding sites in the hippocampus. In contrast, an elevation of serotonin levels and an increase in Bmax of [3H]imipramine binding were noted in the pons--medulla region. No changes were observed in the noradrenaline content in either of these regions. Intracerebral 6-OHDA lesion produced a drastic suppression of noradrenaline levels in cerebral cortex but failed to alter the binding affinity (KD) or density (Bmax) of [3H]imipramine recognition sites. A single injection of reserpine (2.5 mg/kg) resulted in marked depletion of both serotonin (by 57%) and noradrenaline (by 86%) content and serotonin uptake (by 87%) in the cerebral cortex but had no significant influence of the parameters of high affinity [3H]imipramine binding in this brain region. The results suggest that high affinity [3H]imipramine binding in the brain is directly related to the integrity of serotonergic neurons but not to the magnitude of the uptake or the endogenous levels of the transmitter, and is not affected by damage to noradrenergic neurons or by low levels of noradrenaline.  相似文献   

20.
P-chlorophenylalanine, an inhibitor of serotonin synthesis, was found to completely prevent the inhibitory effect of morphine and methadone on the stereotypy caused by d-amphetamine and methyl-phenidate in rats. d-Fenfluramine and m-chlorophenylpiperazine, two drugs supposed to increase serotonin transmission, and halo-peridol, an antagonist of dopamine at central receptors, blocked the stereotyped movements induced by repeated treatment with morphine and methadone. The results suggest that a) brain serotonin mediates the effect of morphine and methadone on amphetamine and methylphenidate stereotypy b) serotonin and dopamine are involved in the stereotyped movements caused by long-term treatment with these narcotics in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号