首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the currently popular hypotheses for the regulation of meiotic resumption in mammalian oocytes proposes that the preovulatory surge of luteinizing hormone causes down-regulation of follicular gap junctions, which in turn disrupts transfer of a meiotic arrester from the somatic cells into the oocyte. The present study has investigated this hypothesis by examining the integrity of membrana granulosa cell gap junctions during the period of irreversible commitment to maturation of golden Syrian hamster oocytes in vivo. Our results have revealed a significant progressive decrease in the fractional area of cell surface occupied by gap junction membrane with increasing percentage of oocytes irreversibly committed to mature (1.946% and 0.921% fractional gap junction area at 0% and 100% oocytes irreversibly committed to mature, respectively, P less than 0.05). This net loss of membrana granulosa cell gap junctions from the cell surface was accompanied by a significant decrease in density of gap junction particles, whether they were arranged in rectilinear or non-rectilinear packing patterns. Furthermore, the number of gap junction particles per unit area of surface membrane scanned also underwent a significant progressive decrease with increasing percentage of oocytes irreversibly committed to mature. These data with the hamster are consistent with the hypothesis that down-regulation of membrana granulosa cell gap junctions may be of central importance in the regulation of gonadotropic stimulation of meiotic resumption in mammalian oocytes.  相似文献   

2.
Mouse oocytes are reversibly inhibited from resuming meiotic maturation in vitro by cAMP phosphodiesterase inhibitors such as 3-isobutyl-1-methyl xanthine (IBMX) and cAMP analogs such as dibutyryl cAMP (dbcAMP). Oocytes cultured in IBMX-containing medium were transferred to and cultured in IBMX-free medium for various periods of time prior to their return to either IBMX- or dbcAMP-containing medium. Results from these experiments defined a period of time in which oocytes became committed to resuming meiosis. Forskolin, which elevated the intracellular oocyte cAMP concentration, transiently inhibited oocytes from resuming meiosis. Levels of cAMP were determined in oocytes incubated in medium that allows resumption of meiosis. The level of oocyte cAMP decreased significantly during the time in which oocytes become committed to resuming meiosis. This decrease in oocyte cAMP was not observed in oocytes inhibited from resuming meiosis by IBMX. In addition, cAMP levels were determined in preovulatory antral follicles, cumulus cell-oocyte complexes, and oocytes during gonadotropin-induced resumption of meiosis in vivo. A decrease in oocyte cAMP preceded resumption of meiosis as manifested by germinal vesicle breakdown (GVBD). This decrease apparently occurred before or during a period of time in which follicle and cumulus cell cAMP were increasing. Associated with commitment to resume meiosis was a characteristic set of changes in oocyte phosphoprotein metabolism that preceded GVBD. These changes are, to date, some of the first reported biochemical changes that precede GVBD. Results from these experiments are discussed in terms of a possible role cAMP may play in regulation of resumption of meiosis in mammals.  相似文献   

3.
4.
Ovine cumulus-enclosed oocytes collected from antral follicles (3-5 mm in diameter) were cultured in vitro with 2 x 10(6) granulosa cells/ml in the presence or absence of gonadotropins or in the presence of cytochalasin D (CD). The maturation rate was assessed after 24 h of culture. In the control group, in the presence of gonadotropins (follicle-stimulating hormone-luteinizing hormone (FSH-LH; -10 micrograms/ml) 100% of the oocytes reached metaphase II. Whereas intercellular junctions were no longer present after 6-7 h of culture, germinal vesicle breakdown (GVBD) occurred by the same time. In contrast, in the absence of gonadotropin, the majority of the oocytes (59%) remained blocked in GV stage. The inhibition exerted by the granulosa cells on meiotic resumption was overcome when the cumulus-oocyte complexes (COCs) were incubated in CD (5 micrograms/ml) for 6 h at the beginning of the culture. Under these conditions, 85% of the oocytes matured with extrusion of the first polar body. Cytological analysis by cytofluorescence (NBD phallacidin) and electron microscopy showed that, after 6 h of treatment, CD provoked a redistribution of the microfilaments, mainly in the cumulus cells and to a lesser extent in the oocyte cortex. Intercellular junctions disappeared concomitantly with a significant decrease of the intercellular transport of tritiated uridine. The initiation of GVBD occurred at the same time. These results indicate that the resumption of meiosis was correlated with a loss of both junctional complexes (intermediate and gap junctions) between the cumulus cells and the oocyte.  相似文献   

5.
Membrana granulosa was isolated from healthy large antral follicles of prepubertal or cyclic gilts stimulated with PMSG or PMSG and hCG. Ultrastructural observations revealed that pieces of pig membrana granulosa were associated with the basement membrane. The cattle cumulus-enclosed oocytes (COC) were placed in the rolled pieces of the pig membrana granulosa (PMG). After 8 and 24 hr of coculture with PMG from prepubertal gilts, only 16% and 21% of oocytes underwent GVBD, respectively. PMG from PMSG-stimulated cyclic gilts blocked the resumption of meiosis in all COC. The inhibitory effect of heterologous granulosa cells was fully reversible. When COC were initially incubated for 2 and 4 hr, subsequent culture in PMG prevented GVBD in 100% and 36% of oocytes, respectively. This suggests that functional contact between COC and PMG was established during the first 2 hr of coculture. To follow metabolic cooperation between PMG and COC, PMG was prelabeled with 3H-uridine and cocultured with COC. Autoradiography on semithin sections revealed the intensive passage of 3H-uridine from PMG into the cumulus layer and an oocyte. COC placed in PMG after GVBD (8 and 12 hr of an initial incubation) did not extrude the first polar body. PMG isolated from cyclic gilts after PMSG and hCG stimulation also inhibited GVBD of COC. Since nearly all COC placed in PMG isolated 10 and 12 hr after hCG remained in the GV stage after 24 hr of coculture, the hCG stimulation did not substantially diminish the meiosis inhibiting activity of PMG. During coculture, cattle cumulus cells were closely associated with the basement membrane, but no gap junctions were formed among heterologous granulosa cells. These results suggest that an inhibitory factor secreted by pig granulosa cells is not species specific and it can act in vitro without the mediation of gap junctions. © 1993 Wiley-Liss, Inc.  相似文献   

6.
S.E. Wert  W.J. Larsen   《Tissue & cell》1990,22(6):827-851
Cumulus cells in the mammalian ovary are normally connected to each other and to their enclosed oocyte by an extensive network of gap junctions (GJs). We have shown that the loss of cumulus cell GJs is correlated temporally with meiotic resumption in the intact preovulatory rat follicle (Larsen et al., 1986). Here we describe morphological changes in GJ particle packing patterns (PPPs) that occur prior to GJ loss and meiotic resumption in hormonally stimulated rat cumulus-oocyte complexes (COCs). In the PMSG-primed rat, 89% of the cumulus cell GJ area detected by freeze-fracture electron microscopy consists of tightly packed junctional particles: 4% exhibit loose PPPs of randomly dispersed particles; and 7% contain a mixture of both tight and loose PPPs. One to 2 hr after stimulation with hCG, the area of GJs containing tight PPPs drops by 50%-60%, while junctions exhibiting loosely organized and mixed patterns increase concomitantly. These shifts in PPPs are accompanied by the appearance of unusual particle-free areas of puckered or ruffled nonjunctional membrane at the GJ periphery. Cumulus cell GJs from isolated COCs incubated in FSH-containing medium demonstrate a similar shift in PPPs prior to meiotic resumption. The appearance of fusing areas of particle-free nonjunctional membrane at the GJ periphery in vitro is correlated with GJ loss and is not seen in COCs treated with dihydrocytochalasin B to inhibit endocytotic removal of cumulus GJs. The structural and temporal nature of these morphological observations supports the hypothesis that interruption of junctional communication plays a role in meiotic maturation of the preovulatory oocyte.  相似文献   

7.
The association between germ cells and somatic granulosa cells persists throughout the growth of the oocyte by means of foot processes of the cumulus corona cells that cross the zona pellucida. During meiotic maturation important nuclear and cytoplasmic events occur in cumulus-oocyte complex suggesting implication of cytoskeletal elements. Immunoblotting analysis of cytoskeletal proteins of the cumulus cells revealed the presence of vimentin polypeptide and of at least two cytokeratin polypeptides. Using immunofluorescence techniques on cryostat sections through frozen tissue, we provided evidence for the presence of cytokeratins of the simple epithelial type in addition to vimentin in sheep cumulus cells. These two types of intermediate filaments were localized throughout the cytoplasm and especially in the foot processes which cross the zona pellucida. The contact area between the two cell types was also labelled with the antibodies. Acrylamide treatment of cumulus-oocyte complexes involved a drastic disorganization of the intermediate filament network and triggered the isolation of the oocyte from its cumulus cells. This isolation resulted in resumption of meiosis. From these results it appears that intermediate filaments could participate in the process of gap junction loss and indirectly in the control of meiosis resumption.  相似文献   

8.
Luteinizing hormone (LH) induces maturational processes in oocyte-cumulus cell complexes (OCC) of preovulatory follicles that include both resumption of meiosis in the oocyte and expansion (mucification) of the cumulus oophorus. Both processes require activation of mitogen-activated protein kinase (MAPK) in granulosa cells. Here, it is reported that inhibition of MAPK activation prevented gonadotropin-stimulated resumption of meiosis as well as the rise in expression of two genes whose products are necessary for normal cumulus expansion, Has2 and Ptgs2. However, inhibition of MAPK did not block gonadotropin-induced elevation of granulosa cell cAMP, indicating that the activation of MAPK required for inducing GVB and cumulus expansion is downstream of cAMP. Moreover, activation of MAPK in cumulus cells requires one or more paracrine factors from the oocyte to induce GVB and cumulus expansion; MAPK activation alone is not sufficient to initiate these maturational processes. This study demonstrates a remarkable interaction between the oocyte and cumulus cells that is essential for gonadotropin-induced maturational processes in OCC. By enabling gonadotropin-dependent MAPK activation in granulosa cells, oocytes promote the generation of a return signal from these cells that induces the resumption of meiosis. It also appears that an oocyte-dependent pathway downstream from oocyte-enabled activation of MAPK, and distinct from that promoting the resumption of meiosis, governs cumulus expansion.  相似文献   

9.
During mammalian oocyte growth, genomic DNA may accumulate DNA double-strand breaks (DSBs) induced by factors such as reactive oxygen species. Recent evidence demonstrated that slight DSBs do not activate DNA damage checkpoint proteins in denuded oocytes. These oocytes, even with DNA DSBs, can resume meiosis and progress to metaphase of meiosis II. Meiotic resumption in oocytes is also controlled by the surrounding cumulus cells; accordingly, we analyzed whether cumulus-cell enclosed oocytes (CEOs) with DNA damage are able to resume meiosis. Compared with DNA-damaged denuded oocytes, we found that meiotic resumption rates of CEOs significantly decreased. To assess the mechanism by which cumulus cells block meiotic resumption in CEOs with DNA DSBs, we treated the cumulus oocyte complex with the gap junction inhibitor carbenoxolone and found that carbenoxolone can rescue the block in CEO meiosis induced by DNA DSBs. Since cumulus cell-synthesized cAMPs can pass through the gap junctions between oocyte and cumulus cell to block oocyte meiosis, we measured the expression levels of adenylate cyclase 1 (Adcy1) in cumulus cells, and G-protein coupled receptor 3 (Gpr3) and phosphodiesterase 3A (Pde3a) in oocytes, and found that the mRNA expression level of Adcy1 increased significantly in DNA-damaged cumulus cells. In conclusion, our results indicate that DNA DSBs promote cAMP synthesis in cumulus cells, and cumulus cAMPs can inhibit meiotic resumption of CEOs through gap junctions.  相似文献   

10.
Cell-to-cell communication was characterized in cumulus-oocyte complexes from rat ovarian follicles before and after ovulation. Numerous, small gap junctional contacts were present between cumulus cells and oocytes before ovulation. The gap junction are formed on the oocyte surface by cumulus cell processes that transverse the zona pellucida and contact the oolemma. The entire cumulus mass was also connected by gap junctions via cumulus-cumulus interactions. In the hours preceding ovulation, the frequency of gap junctional contacts between cumulus cells and the oocyte was reduced, and the cumulus was disorganized. Electrophysiological measurements indicated that bidirectional ionic coupling was present between the cumulus and oocyte before ovulation. In addition, iontophoretically injected fluorescein dye was tranferred between the oocyte and cumulus cells. Examination of the extent of ionic coupling in cumulus-oocyte specimens before and after ovulation revealed that ionic coupling between the cumulus and oocyte progressively decreased as the time of ovulation approached. In postovulatory specimens, no coupling was detected. Although some proteolytic mechanism may be involved in the disintegration of the cumulus-oocyte complex, neither the cumulus cells nor the oocyte produced detectable levels of plasminogen activator, a protease which is synthesized by membrana granulosa cells. In summary, cell communication is a characterisitc feature of the cumulus-oocyte complex, and this communication is terminated near the time of ovulation. This temporal pattern of the termination of communication between the cumulus and the oocyte may indicate that communication provides a mechanism for regulating the maturation of the oocyte during follicular development before ovulation.  相似文献   

11.
Maturation of the rat cumulus-oocyte complex: structure and function   总被引:1,自引:0,他引:1  
The cumulus cells that surround the mammalian oocyte become dispersed following the preovulatory surge of the pituitary gonadotropin, luteinizing hormone (LH). We have examined cumulus-oocyte complexes of PMSG-primed immature rats before and at 1, 2, 3, 4, 6, and 8 hr after injection of human chorionic gonadotropin (hCG), which acts on the rat ovary like the pituitary gonadotropin. Associations between projections of the cumulus cells and the oocyte were analyzed in thin sections. We observed that some cumulus projections were greatly enlarged where they associate with the oocyte. These enlarged regions were filled with numerous small vesicles. Gap junctions between cumulus cell projections and the oocytes were small. We quantitated the number and size of gap junctions between cumulus cells. The number of small gap junctions (less than 1 microM) between cumulus cells did not change significantly over the 8-hr period after hCG administration. Larger gap junctions, however, showed a general downward trend beginning after the third hour post hCG. Light microscopic observations of plastic sections revealed that dispersion of the cumulus oophorus is not observed until after 4 hr post-hCG, but between 4 and 8 hr after gonadotropin administration the cumulus becomes markedly dispersed. In the majority of the oocytes in these complexes the germinal vesicle (GV) displayed some irregularity in shape at 2 hr post-hCG, although absence of the GV was not observed until later. Our observations suggest a new means of communication in the cumulus-oocyte complex by the vesicle-filled enlargements of the cumulus cell projections at the oocyte surface. They further indicate that the decrease in metabolic coupling observed in rat cumulus-oocyte complexes soon after exposure to LH is not associated with a change in number and size of the gap junctions between the cumulus cells. We suggest that it is either the disruption of the gap junctions at the region of contact of the cumulus cell projections with the oocyte surface or the operation of a gating mechanism that blocks the junctional channels without affecting their morphological appearance that is responsible for uncoupling of the oocyte from the cumulus cells.  相似文献   

12.
Mammalian oocytes reach prophase of first meiosis around the time of birth, and remain at this stage for months or years, depending on the species. Only after puberty will the fully-grown oocytes begin to resume meiosis which is stimulated by gonadotropin surge. It has long been known that a high level of intra-oocyte cyclic adenosine 3',5'-monophosphate (cAMP) prevents oocyte meiosis resumption as indicated by germinal vesicle breakdown (GVBD). Recently, guanosine triphosphate-binding (G) protein-coupled receptors/G proteins/adenyl cyclase pathway endogenous to the oocyte as well as cAMP diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that prevent oocytes from resuming meiosis. Another second messager molecule, guanosine 3',5'-cyclic monophosphate (cGMP), has also recently been found to play important roles in maintaining oocyte meiosis arrest. cGMP in the follicular somatic cells diffuses into the oocyte and causes an increase in oocyte cAMP, presumably by acting on phosphodiesterase 3 (PDE3). The cGMP level in the somatic compartment of the follicle decreases in response to luteinizing hormone (LH), and this change may be mediated through the epidermal growth factor (EGF)-like factors and specific cGMP-phosphodiesterase subtype activity. It is well known that gonadotropic stimulation of meiotic resumption depends on mitogen-activated protein kinase (MAPK) activation in the somatic compartment of the follicle; recent studies show that LH, through cAMP/protein kinase A (PKA) and protein kinase C (PKC) pathways, induces the synthesis of paracine factors such as EGF-like facors and meiosis activating sterol (MAS) to regulate oocyte GVBD via the MAPK pathway in follicle cells. A recent granulosa cell-specific knockout study has for the first time provided in vivo evidence for the important role of extracellular regulated kinase 1 and 2 (ERK1/2), two main forms of MAPK, and their downstream molecules in granulosa cells in oocyte meiosis resumption. Unresolved questions and future directions on research regarding signaling changes in follicle cells and oocytes as well their communication in response to the gonadotropin surge are addressed in this review.  相似文献   

13.
It has been demonstrated in Bufo arenarum that fully grown oocytes are capable of meiotic resumption in the absence of a hormonal stimulus if they are deprived of their follicular envelopes. This event, called spontaneous maturation, only takes place in oocytes collected during the reproductive period, which have a metabolically mature cytoplasm. In Bufo arenarum, progesterone acts on the oocyte surface and causes modifications in the activities of important enzymes, such as a decrease in the activity of adenylate cyclase (AC) and the activation of phospholipase C (PLC). PLC activation leads to the formation of diacylglycerol (DAG) and inositol triphosphate (IP(3)), second messengers that activate protein kinase C (PKC) and cause an increase in intracellular Ca(2+). Recent data obtained from Bufo arenarum show that progesterone-induced maturation causes significant modifications in the level and composition of neutral lipids and phospholipids of whole fully grown ovarian oocytes and of enriched fractions in the plasma membrane. In amphibians, the luteinizing hormone (LH) is responsible for meiosis resumption through the induction of progesterone production by follicular cells. The aim of this work was to study the importance of gap junctions in the spontaneous and LH-induced maturation in Bufo arenarum oocytes. During the reproductive period, Bufo arenarum oocytes are capable of undergoing spontaneous maturation in a similar way to mammalian oocytes while, during the non-reproductive period, they exhibit the behaviour that is characteristic of amphibian oocytes, requiring progesterone stimulation for meiotic resumption (incapable oocytes). This different ability to mature spontaneously is coincident with differences in the amount and composition of the phospholipids in the oocyte membranes. Capable oocytes exhibit in their membranes higher quantities of phospholipids than incapable oocytes, especially of PC and PI, which are precursors of second messengers such as DAG and IP(3). The uncoupling of the gap junctions with 1-octanol or halothane fails to induce maturation in follicles from the non-reproductive period, whose oocytes are incapable of maturing spontaneously. However, if the treatment is performed during the reproductive period, with oocytes capable of undergoing spontaneous maturation, meiosis resumption occurs in high percentages, similar to those obtained by manual defolliculation. Interestingly, results show that LH is capable of inducing GVBD in both incapable oocytes and in oocytes capable of maturing spontaneously as long as follicle cells are present, which would imply the need for a communication pathway between the oocyte and the follicle cells. This possibility was analysed by combining LH treatment with uncoupling agents such as 1-octanol or halothane. Results show that maturation induction with LH requires a cell-cell coupling, as the uncoupling of the gap junctions decreases GVBD percentages. Experiments with LH in the presence of heparin, BAPTA/AM and theophylline suggest that the hormone could induce GVBD by means of the passage of IP(3) or Ca(2+) through the gap junctions, which would increase the Ca(2+) level in the oocyte cytoplasm and activate phosphodiesterase (PDE), thus contributing to the decrease in cAMP levels and allowing meiosis resumption.  相似文献   

14.
The effect of the different follicular cell types on resumption of meiosis was studied during stimulation with FSH. Cumulus enclosed oocytes (CEO), denuded oocytes (DO), and cumulus and mural granulosa cells were used. The resumption of meiosis and oocyte maturation were assessed by the determination of the germinal vesicle breakdown (GVBD) and polar body formation (PB) at the end of a 24 hr culture period in the presence of 4 mM hypoxanthine (HX). The effects of recombinant LH (r-LH) and hCG were also evaluated. Oocyte exposure to the gonadotrophins varied from 5 min to 24 hr (i.e., priming time). Oocytes were obtained from immature gonadotrophin-stimulated and -unstimulated mice. 1. FSH (1 IU/L-75 IU/L) provoked a dose-dependent increase in GVBD and PB in CEO, but not in DO, in stimulated and unstimulated mice. Eight IU/L was sufficient for inducing resumption of meiosis. In contrast, LH and hCG (both 1 IU/L-1500 IU/L) were without effect on GVBD and PB in CEO and DO of oocytes from stimulated and unstimulated mice. A combination of 8IU/L FSH and 4–8 IU/L hCG produced an additive effect, whereas combinations with LH and higher concentrations of hCG had no such effect. 2. A 2 hr priming with FSH (8 IU/L-75 IU/L) induced a dose-dependent oocyte maturation in CEO. Thirty minutes of priming with FSH (75 IU/L) was sufficient for induction of meiotic resumption in CEO. 3. Priming CEO with FSH for 2 hr followed by the separation and repooling of oocytes and cumulus cells induced oocyte maturation. GVBD of new, unprimed DO added to cumulus cells of primed CEO increased slightly but was significant, whereas GVBD in DO isolated from the primed CEO only increased marginally. DO cocultured with FSH-primed cumulus masses seem to be prevented from resuming meiosis. 4. Priming a coculture of granulosa cells and DO with FSH for 2 hr caused a significant increase in GVBD compared to the control, evaluated after 24 hr. In contrast, a 24 hr FSH-priming of a coculture of granulosa cells and DO was without effect on GVBD. 5. A spent medium in which unstimulated cumulus cells or mural granulosa cells had grown was without effect on GVBD in DO. However, a small fraction of the DO resumed meiosis after culture in a spent medium derived from a 2 hr priming of CEO and spent media from 24 hr priming of CEO induced a 2–3 times higher GVBD frequency in the DO compared to the controls. Heat treatment of spent media (70°C, 30 min) from a 24 hr FSH-priming of CEO still induced GVBD in naive DO. The results showed that FSH, in a concentration of as little as 8 IU/L, but not r-LH and hCG, induced within 30 minutes the cumulus cells to produce and after 2 hr to secrete a diffusible heat stable meiosis activating substance. This substance overcame, in a paracrine fashion, the inhibiting effect of HX and induced oocyte maturation directly in DO. The production of this substance, however, was dependent on the initial connection between the cumulus cells and the oocyte, indicating an important 2-way communication between these 2 cell types. The mural granulosa cells did not produce a meiosis inducing activity by stimulation with FSH, but significantly, more DO matured after coculture with the nonstimulated granulosa cells for 24 hr than for 2 hr. It is proposed that the heat stable meiosis activating component of the spent media from the FSH-stimulated CEO belongs to the meiosis activating sterols, MAS, previously isolated from human follicular fluid and from adult bull testes. Mol. Reprod. Dev. 46:296–305, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Information about the mechanisms of meiotic arrest and resumption of meiosis in feline oocytes is still limited. The aim of this study was to investigate the effect of the presence of gonadotropins during IVM, on meiotic progression in relation to the status of gap junction mediated communications between oocyte and cumulus cells, to the cAMP intracellular content, and to the intra-oocyte concentration of glutathione (GSH) in feline oocytes. Our results indicated that about 50% of cumulus-oocyte complexes (COCs) showed functionally open communications at the time of collection, while the remainder were partially or totally closed. After 3h of culture, the percentage of COCs with functional gap junctions was significantly greater in the group matured in the presence of gonadotropins than in those matured without them, where an interruption of communications was observed. Moreover, this precocious uncoupling was associated with a moderate increase of cAMP concentration in the oocyte, lower than in the group exposed to gonadotropins. Intra-oocyte glutathione levels decreased significantly after 24h of IVM, whether gonadotropins were present or absent during the culturing process. The presence of thiol compounds in the IVM medium induced an intra-oocyte GSH concentration significantly higher than that found in oocytes cultured without these compounds, and similar to the GSH content of immature oocytes. Moreover, the intracellular GSH concentration increased as meiosis progressed. The present study suggests that in feline oocytes, gonadotropins affect the dynamic changes in communications between oocyte and cumulus cells during IVM. However, the intracellular concentration of GSH is not influenced by the gonadotropin stimulation. Moreover, the presence of gonadotropins and thiol compounds results in an increase of GSH levels along with meiotic progression of the oocytes.  相似文献   

16.
Interactions between the cumulus-oophorus and the oocyte have been implicated in the regulation of meiotic maturation. Quantitative analysis of freeze-fractured rat cumulus-oocyte complexes reveals that the net area of cumulus cell gap junction membrane decreases about 15-fold, 2-3 hr following an ovulatory stimulus. This dramatic loss of gap junctions is temporally correlated with germinal vesicle breakdown and cumulus expansion, and is discussed with respect to meiotic maturation and ovulation of the mammalian oocyte.  相似文献   

17.
Bovine oocytes are arrested at the prophase of first meiotic cell cycle. Meiosis resumes in oocytes of pre-ovulatory follicles upon LH surge. However, oocytes from secondary follicles spontaneously resume meiosis in the absence of hormones if removed from the follicle and cultured in vitro. The nature of meiotic arrestor in bovine follicles is poorly understood. In this study we investigated the role of cell-cell interactions between granulosa and cumulus cells and the oocyte in mediating maintenance of meiotic arrest by cAMP. We sorted oocytes as granulosa-cumulus oocyte complexes (GCOC) if surrounded with cumulus cells attached to a large granulosa investment or cumulus oocytes complexes (COC) if surrounded with cumulus cells only and investigated the role cAMP in maintenance of meiotic arrest in these oocytes under various conditions. In hormone- and serum-free medium both GCOC and COC enclosed oocytes resumed meiosis. When [cAMP](i) was elevated with addition of invasive adenylate cyclase (iAC) GCOC enclosed oocytes were maintained in the prophase with intact germinal vesicle (GV) while COC enclosed oocytes underwent GV breakdown (GVBD). iAC elevated [cAMP](i) in both types of oocytes to the same level. If oocytes were liberated from the cumulus and granulosa cells, they re-initiated meiosis in serum and hormone free medium, but remained in the GV stage if iAC was added to the medium. Untreated GCOC and COC enclosed oocytes extruded first polar body at the same frequency in hormone-supplemented media. GCOC and COC enclosed oocytes but not denuded oocytes (DO) cultured without somatic cells acquired developmental competence if cultured in hormone-containing medium. It is concluded that maintenance of meiotic arrest is regulated by the interplay of [cAMP](i), and cumulus and granulosa cells.  相似文献   

18.
夏国良 《动物学报》1996,42(4):408-413
实验研究了小鼠卵母细胞体外过程中卵丘-卵母细胞间的相互作用。实验小鼠为雌性B6D2杂交一代。激素处理48小时后分离出卵后天和卵母细胞复合体,并培养在含有次黄嘌呤的培养液中。24小时后检查卵母细胞核成熟情况。  相似文献   

19.
本实验利用卵母细胞的体外培养模型,将小鼠卵丘-卵母细胞复合体(CEO)和去卵丘卵母细胞(DO)在体外培养,系统研究了促性腺激素(FSH、hCG)诱导小鼠卵母细胞减数分裂的机制。结果显示,FSH能剂量依赖性地诱导CEO恢复减数分裂(Fig.1),但对DO无影响;hCG对 CEO、 DO皆无效果(Fig.2);用 FSH预处理CEO时间达到1小时后,就能显著诱导卵母细胞成熟,2小时后作用达到最大;不再增强(Fig.3);用 FSH处理CEO 2小时及24小时的培养液,能诱导DO恢复减数分裂,但预处理卵丘细胞24小时的培养液,并不能诱导DO恢复减数分裂(Fig.4A);这种培养液在70℃下30分钟后,仍能刺激DO成熟(Fig.4B);甾醇类物质合成抑制剂酮康唑,可剂量依赖性地抑制FSH的促减数分裂恢复作用(Fig.5)。这些结果说明, FSH可能诱导卵丘-卵母细胞复合体中的卵丘细胞分泌一种促减数分裂恢复物质;该物质作用于卵母细胞,诱导其恢复减数分裂而成熟;这种物质可能是一种甾醇类物质。  相似文献   

20.
Cumulus oophorus, an investing structure unique to oocytes of higher mammals, is induced to synthesize an extensive extracellular matrix by ovulatory stimulus, leading to the characteristic preovulatory expansion of the cumulus-oocyte complex. The extracellular matrix consists of cumulus cell-secreted hyaluronan, proteoglycans and proteins, as well as extrafollicularly originated SHAPs (serum-derived hyaluronan-associated proteins) that are bound covalently to hyaluronan. The secretion and assembly of matrix molecules by cumulus cells are temporally regulated by factors derived from both mural granulosa cells and oocyte, which synchronize the deposition of the cumulus oophorus matrix with other intrafollicular ovulatory events. The cumulus oophorus matrix is essential for ovulation and subsequent fertilization. Recently, taking advantage of animal models with defined genetic modifications, it has become possible to investigate in vivo the structure of the cumulus oophorus matrix, the regulatory mechanism for matrix deposition and its biological functions. This review focuses on the recent findings on the construction of the cumulus oophorus matrix and the regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号