首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary selenium (Se) deficiency induces muscular dystrophy in chicken, but the molecular mechanism remains unclear. The aim of the present study was to investigate the effect of dietary Se deficiency on the expressions of 25 selenoproteins. One-day-old broiler chickens were fed either an Se deficiency diet (0.033 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a diet supplemented with Se (as sodium selenite) at 0.2 mg/kg for 55 days. Then, the mRNA levels of 25 selenoproteins in chicken muscles were examined, and the principal component was further analyzed. The results showed that antioxidative selenoproteins especially Gpxs and Sepw1 were highly and extensively expressed than other types of selenoproteins in chicken muscles. In 25 selenoproteins, Gpxs, Txnrd2, Txnrd 3, Dio1, Dio 3, Selk, Sels, Sepw1, Selh, Sep15, Selu, Selpb, Sepp1, Selo, Sepx1, and SPS2 were downregulated (P?P?>?0.05). Se deficiency decreased the expressions of 19 selenoproteins (P?P?相似文献   

2.
Selenium (Se) is a necessary trace mineral in the diet of humans and animals. Cadmium (Cd) is a toxic heavy metal that can damage animal organs, especially the kidneys. Antagonistic interactions between Se and Cd have been reported in previous studies. However, little is known about the effects of Se against Cd toxicity and on the mRNA levels of 25 selenoprotein genes and inflammatory factors in chicken kidneys. In the current study, we fed chickens with a Se-treated, Cd-treated, or Se/Cd treated diet for 90 days. We then analyzed the mRNA expression of inflammatory factors (including prostaglandin E synthase (PTGES), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and 25 selenoprotein genes (Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, SPS2, Sepp1, SelPb, Sep15, Selh, Seli, Selm, Selo, Sels, Sepx1, Selu, Selk, Selw, Seln, Selt). The results demonstrated that Cd exposure increased the Cd content in the chicken kidneys, renal tubular epithelial cells underwent denaturation and necrosis, and the tubules became narrow or disappeared. However, Se supplementation reduced the Cd content in chicken kidneys and induced normal development of renal tubular epithelial cells. In addition, we also observed that Se alleviated the Cd-induced increase in the mRNA levels of inflammatory factors and ameliorated the Cd-induced downtrend in the mRNA levels of 25 selenoprotein genes in chicken kidneys.  相似文献   

3.
Selenium (Se) is an essential trace element in many life forms due to its occurrence as selenocysteine (Sec) residue in selenoproteins. However, little is known about the expression pattern of selenoproteins in the liver of layer chicken. To investigate the effects of Se deficiency on the mRNA expressions of selenoproteins in the liver tissue of layer chickens, 1-day-old layer chickens were randomly allocated into two groups (n?=?120/group). The Se-deficient group (?Se) was fed a Se-deficient corn–soy basal diet; the Se-adequate group as control (+Se) was fed the same basal diet supplemented with Se at 0.15 mg/kg (sodium selenite). The liver tissue was collected and examined for mRNA levels of 21 selenoprotein genes at 15, 25, 35, 45, 55, and 65 days old. The data indicated that the mRNA expressions of Gpx1, Gpx2, Gpx3, Gpx4, Sepn1, Sepp1, Selo, Sepx1, Selu, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, SPS2, Selm, SelPb, Sep15, and Sels were decreased (p?<?0.05), but not the levels of Dio3 and Seli (p?>?0.05). The results showed that the mRNA levels of 19 selenoprotein (except Seli and Dio3) genes in the layer chicken liver were regulated by diet Se level. The present study provided some compensated data about the roles of Se in the regulation of selenoproteins.  相似文献   

4.
Selenium (Se) is necessary for the immune system in chicken and mediates its physiological functions through selenoproteins. Heat shock proteins (Hsps) are indispensable for maintaining normal cell function and for directing the immune response. The aim of the present study was to investigate the effects of Se deficiency on the messenger ribonucleic acid (mRNA) expression levels of selenoproteins and Hsps as well as immune functions in the chicken bursa of Fabricius. Two groups of chickens, namely the control and Se-deficient (L group) groups, were reared for 55 days. The chickens were offered a basal diet, which contained 0.15 mg Se/kg in the diet fed to the control group and 0.033 mg Se/kg in the diet fed to the L group. We performed real-time quantitative polymerase chain reactionto detect the mRNA expression levels of selenoproteins and Hsps on days 15, 25, 35, 45 and 55. Western blotting was used to determine the protein expression levels of Hsps on days 35, 45 and 55, and immune functions were assessed through an enzyme-linked immunosorbent assay on days 15, 35, and 55. The data showed that the mRNA expression levels of selenoproteins, such as Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, GPx1, GPx2, GPx3 GPx4, Sepp1, Selo, Sel-15, Sepx1, Sels, Seli, Selu, Selh, and SPS2, were significantly lower (P < 0.05) in the L group compared with the control group. Additionally, the mRNA and protein expression levels of Hsps (Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90) were also significantly higher (P < 0.05) in the L group. The expression levels of IL-2, IL-6, IL-8, IL-10, IL-17, IL-1β, IFN-α, IFN-β, and IFN-γ were significantly lower (P < 0.05) and TNF-α was significantly higher (P < 0.05) in the L group compared with the control group. Our results show that immunosuppression was accompanied by a downregulation of mRNA expression levels of selenoproteins and an upregulation of the Hsp mRNA expression levels. Thus, Se deficiency causes defects in the chicken bursa of Fabricius, and selenoproteins and Hsps play important roles in immunosuppression in the bursa of Fabricius of chickens with Se deficiency.  相似文献   

5.
Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.  相似文献   

6.
Nutritional muscular dystrophy (NMD) of chicks is induced by dietary selenium (Se)/vitamin E (Vit. E) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms related to the presumed oxidative cell damage, we fed four groups of 1-day-old broiler chicks (n = 40/group) with a basal diet (BD; 10 μg Se/kg; no Vit. E added, −Se −Vit. E) or the BD plus all-rac-α-tocopheryl acetate at 50 mg/kg (−Se +Vit. E), Se (as sodium selenite) at 0.3 mg/kg (+Se −Vit. E), or both of these nutrients (+Se +Vit. E) for 6 weeks. High incidences of NMD (93%) and mortality (36%) of the chicks were induced by the BD, starting at week 3. Dietary Se deficiency alone also induced muscle fiber rupture and coagulation necrosis in the pectoral muscle of chicks at week 3 and thereafter, with increased (P < 0.05) malondialdehyde, decreased (P < 0.05) total antioxidant capacity, and diminished (P < 0.05) glutathione peroxidase activities in the muscle. To link these oxidative damages of the muscle cells to the Se-deficiency-induced NMD, we first determined gene expression of the potential 26 selenoproteins in the muscle of the chicks at week 2 before the onset of symptoms. Compared with the +Se chicks, the −Se chicks had lower (P < 0.05) muscle mRNA levels of Gpx1, Gpx3, Gpx4, Sepp1, Selo, Selk, Selu, Selh, Selm, Sepw1, and Sep15. The −Se chicks also had decreased (P < 0.05) production of 6 selenoproteins (long-form selenoprotein P (SelP-L), GPx1, GPx4, Sep15, SelW, and SelN), but increased levels (P < 0.05) of the short-form selenoprotein P in muscle at weeks 2 and 4. Dietary Se deficiency elevated (P < 0.05) muscle p53, cleaved caspase 3, cleaved caspase 9, cyclooxygenase 2 (COX2), focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), phospho-Akt, nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, phospho-JNK, and phospho-ERK and decreased (P < 0.05) muscle procaspase 3, procaspase 9, and NF-κB inhibitor α. In conclusion, the downregulation of SelP-L, GPx1, GPx4, Sep15, SelW, and SelN by dietary Se deficiency might account for induced oxidative stress and the subsequent peroxidative damage of chick muscle cells via the activation of the p53/caspase 9/caspase 3, COX2/FAK/PI3K/Akt/NF-κB, and p38 MAPK/JNK/ERK signaling pathways. Metabolism of peroxides and redox regulation are likely to be the mechanisms whereby these selenoproteins prevented the onset of NMD in chicks.  相似文献   

7.
8.
This study describes the effects of selenium (Se) deficiency on the messenger ribonucleic acid (mRNA) expression of 25 selenoproteins (Sels) (including glutathione peroxidases (GPx1–GPx4), thioredoxin reductases (TrxR1–TrxR3), iodothyronine deiodinases (ID1–ID3), selenophosphate synthetase 2 (SPS2), 15-kDa Sel (Sel15), SelH, SelI, SelK, SelM, Sepn1, SelO, Sepx, Selpb, SelS, SelT, SelW, Sepp1, and SelU in the adipose tissues (subcutaneous adipose, visceral adipose, and articular adipose) of chickens. One hundred and fifty 1-day-old chickens were randomly assigned to two groups of 75 each and were fed a low-Se diet (0.032 mg/kg Se) or a control diet (0.282 mg/kg Se). The expression levels of 25 Sel mRNAs were determined on days 35, 45, and 55 from three parts (subcutaneous adipose, visceral adipose, and articular adipose) of the chicken adipose tissues. The results showed that the expression levels of the 25 Sel mRNAs were significantly lower (P?<?0.05) in the low-selenium group than in the control group. In addition, the Sel mRNA expression levels in the three adipose tissues were observed to decrease in a time-dependent manner with increasing feeding time.  相似文献   

9.
In the present study, specific small interfering RNA (siRNA) for selenoprotein K (Selk) gene was designed and transfected into chicken myoblasts. Then, the expressions of inflammatory factors (including induced nitric oxide synthase [iNOS], nuclear factor-kappa B [NF-κB], heme-oxygenase-1 [HO-1], cyclooxygenase-2 [COX-2], and prostaglandin E synthase [PTGEs]), inflammation-related cytokines (including interleukin [IL]-1β, IL-6, IL-7, IL-8, IL-17, and interferon [IFN]-γ), and heat shock proteins (HSPs) (including HSP27, HSP40, HSP60, HSP70, and HSP90) were examined at 24 and 72 h after transfection. The results showed that messenger RNA (mRNA) expressions of iNOS, NF-κB, HO-1, COX-2, IL-6, IL-7, IL-8, HSP 27, HSP 40, HSP 60, HSP 70, and HSP 90 were significantly increased (p < 0.05) at 24 and 72 h after siRNA transfection, and the mRNA expressions of PTGEs, IL-1β, IL-17, and IFN-γ were significantly increased and decreased (p < 0.05) at 24 and 72 h after siRNA transfection. The results also showed that the protein expressions of iNOS, NF-κB, HO-1, COX-2, HSP60, HSP70, and HSP90 were significantly increased (p < 0.05) at 24 and 72 h after siRNA transfection. The correlation analysis and principal component analysis (PCA) showed that PTGEs, IL-1β, IL-17, IFN-γ, HSP40, and HSP90 might play special roles in response to Selk silencing in chicken myoblasts. These results indicated that Selk silencing induced inflammation response by affecting the expression levels of inflammatory factors and inflammation-related cytokines, and the heat shock proteins might play protective roles in this response in chicken myoblasts.  相似文献   

10.
Thioredoxin (Trx) is a small molecular protein with complicated functions in a number of processes, including inflammation, apoptosis, embryogenesis, cardiovascular disease, and redox regulation. Some selenoproteins, such as glutathione peroxidase (Gpx), iodothyronine deiodinase (Dio), and thioredoxin reductase (TR), are involved in redox regulation. However, whether there are interactions between Trx and selenoproteins is still not known. In the present paper, we used a Modeller, Hex 8.0.0, and the KFC2 Server to predict the interactions between Trx and selenoproteins. We used the Modeller to predict the target protein in objective format and assess the accuracy of the results. Molecular interaction studies with Trx and selenoproteins were performed using the molecular docking tools in Hex 8.0.0. Next, we used the KFC2 Server to further test the protein binding sites. In addition to the selenoprotein physiological functions, we also explored potential relationships between Trx and selenoproteins beyond all the results we got. The results demonstrate that Trx has the potential to interact with 19 selenoproteins, including iodothyronine deiodinase 1 (Dio1), iodothyronine deiodinase 3 (Dio3), glutathione peroxidase 1 (Gpx1), glutathione peroxidase 2 (Gpx2), glutathione peroxidase 3 (Gpx3), glutathione peroxidase 4 (Gpx4), selenoprotein H (SelH), selenoprotein I (SelI), selenoprotein M (SelM), selenoprotein N (SelN), selenoprotein T (SelT), selenoprotein U (SelU), selenoprotein W (SelW), selenoprotein 15 (Sep15), methionine sulfoxide reductase B (Sepx1), selenophosphate synthetase 1 (SPS1), TR1, TR2, and TR3, among which TR1, TR2, TR3, SPS1, Sep15, SelN, SelM, SelI, Gpx2, Gpx3, Gpx4, and Dio3 exhibited intense correlations with Trx. However, additional experiments are needed to verify them.  相似文献   

11.
The aim of the present study was to analyze the selenoprotein expression levels in gastric cancer patients. We enrolled 40 patients (29 males, 11 females) who were recently diagnosed with gastric cancer and 50 healthy people (30 males, 20 females) as controls. The expression of 25 selenoprotein genes (Dio1, Dio2, Dio3, Gpx1, Gpx2, Gpx3, Gpx4, Gpx6, SelH, SelI, SelK, SelM, SelN, SelO, SelP, SelS, SelT, SelV, SelW, SelX, Sel15, Sps2, TR1, TR2, and TR3) in human gastric cancer tissues, para-carcinoma tissues, adjacent normal gastric tissues, erythrocytes, and lymphocytes in the gastric cancer group and healthy control group was analyzed by qRT-PCR. Here, we showed that among the 25 selenoproteins, 13 selenoproteins in erythrocytes (Gpx1, Gpx4, Sel15, TR1, TR2, SelH, SelK, SelM, SelO, SelS, SelV, SelW, and Sps2), 15 selenoproteins in lymphocytes (Gpx1, Gpx4, Sel15, TR1, TR2, SelH, SelK, SelN, SelO, SelS, SelT, SelV, SelX, SelW, and Sps2) and 13 selenoproteins in gastric cancer and para-carcinoma tissues (Dio1, Dio2, Dio3, Gpx1, Gpx4, Sel15, SelH, SelK, SelM, SelS, SelT, SelW, and Sps2) were significantly decreased (P < 0.05) in the gastric cancer group compared to the control group. In summary, the decreasing expression of selenoprotein genes in gastric cancer patients play an important role in the gastric cancer, although further studies are needed to better understand our findings.  相似文献   

12.
13.
Although supranutrition of selenium (Se) is considered a promising anti-cancer strategy, recent human studies have shown an intriguing association between high body Se status and diabetic risk. This study was done to determine if a prolonged high intake of dietary Se actually induced gestational diabetes in rat dams and insulin resistance in their offspring. Forty-five 67-day-old female Wistar rats (n=15/diet) were fed a Se-deficient (0.01 mg/kg) corn-soy basal diet (BD) or BD+Se (as Se-yeast) at 0.3 or 3.0mg/kg from 5 weeks before breeding to day 14 postpartum. Offspring (n=8/diet) of the 0.3 and 3.0mg Se/kg dams were fed with the same respective diet until age 112 days. Compared with the 0.3mg Se/kg diet, the 3.0mg/kg diet induced hyperinsulinemia (P<0.01), insulin resistance (P<0.01), and glucose intolerance (P<0.01) in the dams at late gestation and/or day 14 postpartum and in the offspring at age 112 days. These impairments concurred with decreased (P<0.05) mRNA and/or protein levels of six insulin signal proteins in liver and muscle of dams and/or pups. Dietary Se produced dose-dependent increases in Gpx1 mRNA or GPX1 activity in pancreas, liver, and erythrocytes of dams. The 3.0mg Se/kg diet decreased Selh (P<0.01), Sepp1 (P=0.06), and Sepw1 (P<0.01), but increased Sels (P<0.05) mRNA levels in the liver of the offspring, compared with the 0.3mg Se/kg diet. In conclusion, supranutrition of Se as a Se-enriched yeast in rats induced gestational diabetes and insulin resistance. Expression of six selenoprotein genes, in particular Gpx1, was linked to this metabolic disorder.  相似文献   

14.
The aim of the present study was to clarify the effect of low selenium (Se)/high fat on the mRNA expression of selenoproteins, heat shock proteins (HSPs) and cytokines in pig peripheral blood lymphocytes. Forty crossbred boar piglets with healthy lean body weights of 10 kg were randomly divided into four treatment groups (group C, group L-Se, group H-fat, and group L-Se-H-fat) (n = 10/group) and fed with the corresponding diet for 16 weeks. The pig peripheral blood lymphocytes were extracted, and the mRNA expression of selenoproteins, HSPs, and cytokines was measured. Most mRNA levels for selenoproteins decreased in group L-Se, group H-fat, and group L-Se-H-fat, except Gpx1, Gpx2, Selt, and Selm, which were elevated in group H-fat. At the same time, low-Se/high-fat diet increased the expression of HSPs (HSP40, HSP60, HSP70, and HSP90) and inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, IL-9, iNOS, COX-2, NF-κB, and TNF-α) in group L-Se, group H-fat, and group L-Se-H-fat, and genes in group L-Se-H-fat showed greater increases. Also, low-Se/high-fat diet inhibits the expression of TGF-β1 and IFN-γ. In summary, a low-Se/high-fat diet can cause relevant selenoprotein expression changes and promote the expression of pro-inflammatory factors and HSPs, and low Se enhances the expression of HSPs and inflammation factors induced by high fat. This information is helpful for understanding the effects of low-Se and high-fat diet on pig peripheral blood lymphocytes.  相似文献   

15.
16.
Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions.  相似文献   

17.
18.
In vivo studies have shown that selenium is supplied to testis and brain by apoER2-mediated endocytosis of Sepp1. Although cultured cell lines have been shown to utilize selenium from Sepp1 added to the medium, the mechanism of uptake and utilization has not been characterized. Rat L8 myoblast cells were studied. They took up mouse Sepp1 from the medium and used its selenium to increase their glutathione peroxidase (Gpx) activity. L8 cells did not utilize selenium from Gpx3, the other plasma selenoprotein. Neither did they utilize it from Sepp1(Δ240-361), the isoform of Sepp1 that lacks the selenium-rich C-terminal domain. To identify Sepp1 receptors, a solubilized membrane fraction was passed over a Sepp1 column. The receptors apoER2 and Lrp1 were identified in the eluate by mass spectrometry. siRNA experiments showed that knockdown of apoER2, but not of Lrp1, inhibited (75)Se uptake from (75)Se-labeled Sepp1. The addition of protamine to the medium or treatment of the cells with chlorate also inhibited (75)Se uptake. Blockage of lysosome acidification did not inhibit uptake of Sepp1 but did prevent its digestion and thereby utilization of its selenium. These results indicate that L8 cells take up Sepp1 by an apoER2-mediated mechanism requiring binding to heparin sulfate proteoglycans. The presence of at least part of the selenium-rich C-terminal domain of Sepp1 is required for uptake. RT-PCR showed that mouse tissues express apoER2 in varying amounts. It is postulated that apoER2-mediated uptake of long isoform Sepp1 is responsible for selenium distribution to tissues throughout the body.  相似文献   

19.
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.  相似文献   

20.
The aim of the present study was to examine the effect of selenium (Se) deficiency on the expression of selenoproteins in chicken muscular stomach and to detect the correlation of selenoproteins with muscular stomach injuries. One-day-old broiler chickens were maintained for 55 days on a normal diet (0.2 mg/kg) or a Se-deficient diet (0.033 mg Se/kg). The expression levels of 25 selenoproteins, heat shock proteins (HSPs), and inflammatory factors were then examined by real-time PCR. Following this, the correlation between selenoproteins, HSPs, and inflammatory factors was analyzed by principal component analysis (PCA). The results showed that Se deficiency decreased the expression of 25 selenoproteins (P < 0.05), but increased the expression of HSP27, HSP40, HSP60, HSP70, and HSP90, and NF-κB, iNOS, TNF-α, COX-2, and HO-1 (P < 0.05). Selenoproteins showed a high negative correlation with HSPs and inflammatory factors. Thus, the results suggested that Se deficiency induced muscular stomach injuries by decreasing the expression of selenoproteins. In addition, selenoproteins play an important role in regulating HSPs and inflammatory response. The muscular stomach is a key target of Se deficiency and may play a special role in response to Se deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号