首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Siderophore biosynthesis by the highly lethal mould Aspergillus fumigatus is essential for virulence, but non-existent in humans, presenting a rare opportunity to strategize therapeutically against this pathogen. We have previously demonstrated that A. fumigatus excretes fusarinine C and triacetylfusarinine C to capture extracellular iron, and uses ferricrocin for hyphal iron storage. Here, we delineate pathways of intra- and extracellular siderophore biosynthesis and show that A. fumigatus synthesizes a developmentally regulated fourth siderophore, termed hydroxyferricrocin, employed for conidial iron storage. By inactivation of the nonribosomal peptide synthetase SidC, we demonstrate that the intracellular siderophores are required for germ tube formation, asexual sporulation, resistance to oxidative stress, catalase A activity, and virulence. Restoration of the conidial hydroxyferricrocin content partially rescues the virulence of the apathogenic siderophore null mutant Delta sidA, demonstrating an important role for the conidial siderophore during initiation of infection. Abrogation of extracellular siderophore biosynthesis following inactivation of the acyl transferase SidF or the nonribosomal peptide synthetase SidD leads to complete dependence upon reductive iron assimilation for growth under iron-limiting conditions, partial sensitivity to oxidative stress, and significantly reduced virulence, despite normal germ tube formation. Our findings reveal distinct cellular and disease-related roles for intra- and extracellular siderophores during mammalian Aspergillus infection.  相似文献   

3.
Aspergillus fumigatus, the most common airborne fungal pathogen of humans, employs two high-affinity iron uptake systems: iron uptake mediated by the extracellular siderophore triacetylfusarinine C and reductive iron assimilation. Furthermore, A. fumigatus utilizes two intracellular siderophores, ferricrocin and hydroxyferricrocin, to store iron. Siderophore biosynthesis, which is essential for virulence, is repressed by iron. Here we show that this control is mediated by the GATA factor SreA. During iron-replete conditions, SreA deficiency partially derepressed synthesis of triacetylfusarinine C and uptake of iron resulting in increased cellular accumulation of both iron and ferricrocin. Genome-wide DNA microarray analysis identified 49 genes that are repressed by iron in an SreA-dependent manner. This gene set, termed SreA regulon, includes all known genes involved in iron acquisition, putative novel siderophore biosynthetic genes, and also genes not directly linked to iron metabolism. SreA deficiency also caused upregulation of iron-dependent and antioxidative pathways, probably due to the increased iron content and iron-mediated oxidative stress. Consistently, the sreA disruption mutant displayed increased sensitivity to iron, menadion and phleomycin but retained wild-type virulence in a mouse model. As all detrimental effects of sreA disruption are restricted to iron-replete conditions these data underscore that A. fumigatus faces iron-depleted conditions during infection.  相似文献   

4.
放线菌中铁载体生物合成机制研究进展   总被引:2,自引:1,他引:2  
铁载体是由微生物产生,对铁元素具有高亲和性的小分子化合物。这类天然产物所展现的结构多样性引起人们对其生物合成机制的极大兴趣。目前已有研究报道的铁载体生物合成途径主要有2种,一是直接由非核糖体肽合成酶(Nonribosomal peptide synthetases,NRPSs)家族的多酶复合体负责合成,另一种是以不依赖于NRPS(NRPS-independent,NIS)的方式,由一类特殊合成酶家族参与合成。在过去的十多年中,铁载体生物合成成为天然产物生物合成研究领域的热点之一,其中几种依赖于NRPS途径合成的铁载体生物合成机制已得到充分阐明,而对NIS方式合成的铁载体研究也获得了诸多进展。作为放线菌的一类重要次级代谢产物,通过遗传学、化学等手段对放线菌所产生铁载体生物合成途径的遗传学和生物化学研究,能够为发展新的抗菌药物提供契机,同时也能加深我们对这一类生物活性物质形成机制的认识。综述近期该研究方向的进展。  相似文献   

5.
Most fungi and bacteria express specific mechanisms for the acquisition of iron from the hosts they infect for their own survival. This is primarily because iron plays a key catalytic role in various vital cellular reactions in conjunction with the fact that iron is not freely available in these environments due to host sequestration. High-affinity iron uptake systems, such as siderophore-mediated iron uptake and reductive iron assimilation, enable fungi to acquire limited iron from animal or plant hosts. Regulating iron uptake is crucial to maintain iron homeostasis, a state necessary to avoid iron-induced toxicity from iron abundance, while simultaneously supplying iron required for biochemical demand. Siderophores play diverse roles in fungal–host interactions, many of which have been principally delineated from gene deletions in non-ribosomal peptide synthetases, enzymes required for siderophore biosynthesis. These analyses have demonstrated that siderophores are required for virulence, resistance to oxidative stress, asexual/sexual development, iron storage, and protection against iron-induced toxicity in some fungal organisms. In this review, the strategies fungi employ to obtain iron, siderophore biosynthesis, and the regulatory mechanisms governing iron homeostasis will be discussed with an emphasis on siderophore function and relevance for fungal organisms in their interactions with their hosts.  相似文献   

6.
Mycobacterium tuberculosis and Yersinia pestis, the causative agents of tuberculosis and plague, respectively, are pathogens with serious ongoing impact on global public health and potential use as agents of bioterrorism. Both pathogens have iron acquisition systems based on siderophores, secreted iron-chelating compounds with extremely high Fe3+ affinity. Several lines of evidence suggest that siderophores have a critical role in bacterial iron acquisition inside the human host, where the free iron concentration is well below that required for bacterial growth and virulence. Thus, siderophore biosynthesis is an attractive target in the development of new antibiotics to treat tuberculosis and plague. In particular, such drugs, alone or as part of combination therapies, could provide a valuable new line of defense against intractable multiple-drug-resistant infections. Here, we report the design, synthesis and biological evaluation of a mechanism-based inhibitor of domain salicylation enzymes required for siderophore biosynthesis in M. tuberculosis and Y. pestis. This new antibiotic inhibits siderophore biosynthesis and growth of M. tuberculosis and Y. pestis under iron-limiting conditions.  相似文献   

7.
Iron is a key micronutrient for microbial growth but is often present in low concentrations or in biologically unavailable forms. Many microorganisms overcome this challenge by producing siderophores, which are ferric-iron chelating compounds that enable the solubilization and acquisition of iron in a bioactive form. Pantoea stewartii subsp. stewartii, the causal agent of Stewart''s wilt of sweet corn, produces a siderophore under iron-limiting conditions. The proteins involved in the biosynthesis and export of this siderophore are encoded by the iucABCD-iutA operon, which is homologous to the aerobactin biosynthetic gene cluster found in a number of enteric pathogens. Mutations in iucA and iutA resulted in a decrease in surface-based motility that P. stewartii utilizes during the early stages of biofilm formation, indicating that active iron acquisition impacts surface motility for P. stewartii. Furthermore, bacterial movement in planta is also dependent on a functional siderophore biosynthesis and uptake pathway. Most notably, siderophore-mediated iron acquisition is required for full virulence in the sweet corn host, indicating that active iron acquisition is essential for pathogenic fitness for this important xylem-dwelling bacterial pathogen.  相似文献   

8.
9.
It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.Subject terms: Biogeochemistry, Marine microbiology  相似文献   

10.
11.
Iron is an essential element for the growth of nearly all organisms. In order to overcome the problem of its low bioavailability, microorganisms (including fungi) secrete siderophores, high-affinity iron chelators. As the acquisition of iron is also a key step in infection processes, siderophores have been considered as potential virulence factors in several host–pathogen interactions. Most fungi produce siderophores of the hydroxamate-type, which are synthesized by non-ribosomal peptide synthetases (NRPSs). Magnaporthe grisea , the causal agent of rice blast disease, produces ferricrocin as intracellular storage siderophore and excretes coprogens. In the M. grisea genome we identified SSM1 , an NRPS gene, and a gene encoding an l -ornithine N5-monooxygenase ( OMO1 ) that is clustered with SSM1 and responsible for catalysing the first step in siderophore biosynthesis, the N5 hydroxylation of ornithine. Disruption of SSM1 confirmed that the gene encodes ferricrocin synthetase. Pathogenicity of these mutants towards rice was reduced, suggesting a role of this siderophore in pathogenicity of M. grisea .  相似文献   

12.
Iron acquisition is a complex, multicomponent process critical for most organisms' survival and virulence. Small iron chelating molecules, siderophores, mediate transport as key components of common pathways for iron assimilation in many microorganisms. The chemistry and biology of the extraordinary tight and specific metal binding siderophores is of general interest in terms of host/guest chemistry and is a potential target toward the development of therapeutic treatments for microbial virulence. The siderophore pathway of the moderate thermophile, Thermobifida fusca, is an excellent model system to study the process in Gram‐positive bacteria. Here we describe the structure and characterization of the siderophore periplasmic binding protein, FscJ from the fuscachelin gene cluster of T. fusca. The structure shows a di‐domain arrangement connected with a long α‐helix hinge. Several X‐ray structures detail ligand‐free conformational changes at different pH values, illustrating complex interdomain flexibility of the siderophore receptors. We demonstrated that FscJ has a unique recognition mechanism and details the binding interaction with ferric‐fuscachelin A through ITC and docking analysis. The presented work provides a structural basis for the complex molecular mechanisms of siderophore recognition and transportation. Proteins 2016; 84:118–128. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Bacterial siderophores assist pathogens in iron acquisition inside their hosts. They are often essential for achieving a successful infection, and their biosynthesis represents an attractive antibiotic target. Recently, several siderophore biosynthetic loci have been identified, and in vitro studies have advanced our knowledge of the biosynthesis of aryl-capped peptide and peptide–polyketide siderophores from Mycobacterium spp., Pseudomonas spp., Yersinia spp. and other bacteria. These studies also provided insights into the assembly of related siderophores and many secondary metabolites of medical relevance. Assembly of aryl-capped peptide and peptide–polyketide siderophores involves non-ribosomal peptide synthetase, polyketide synthase and non-ribosomal-peptide polyketide hybrid subunits. Analysis of these subunits suggests that their domains and modules are functionally and structurally independent. It appears that nature has selected a set of functional domains and modules that can be rearranged in different order and combinations to biosynthesize different products. Although much remains to be learned about modular synthetases and synthases, it is already possible to conceive strategies to engineer these enzymes to generate novel products.  相似文献   

14.
15.
Marinobacter belong to the class of Gammaproteobacteria and these motile, halophilic or halotolerent bacteria are widely distributed throughout the world’s oceans having been isolated from a wide variety of marine environments. They have also been identified as members of the bacterial flora associated with other marine organisms. Here, using a combination of natural products chemistry and genomic analysis, we assess the nature of the siderophores produced by this genus and their potential relationship to phylogeny and lifestyle/ecological niche of this diverse group of organisms. Our analysis shows a wide level of diversity in siderophore based iron uptake systems among this genus with three general strategies: (1) production and utilization of native siderophores in addition to utilization of a variety of exogenous ones, (2) production and utilization of native siderophores only, (3) lack of siderophore production but utilization of exogenous ones. They all share the presence of at least one siderophore-independent iron uptake ABC transport systems of the FbpABC iron metal type and lack the ability for direct transport of ferrous iron. Siderophore production and utilization can be correlated with phylogeny and thus it forms a type of chemotaxonomic marker for this genus.  相似文献   

16.
17.

Background

Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings

Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.

Conclusions

We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.  相似文献   

18.
Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies.  相似文献   

19.
20.
Recent studies have revealed that the mammalian immune system directly interferes with siderophore-mediated iron acquisition through siderophore-binding proteins and that the association of certain siderophores, or siderophore modifications, with virulence is a direct response of pathogens to evade these defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号