共查询到20条相似文献,搜索用时 0 毫秒
1.
The effciency of denitrification, or anaerobic respiration, in Pseudomonas denitrificans was investigated, using growth yield as an index. Glutamate was mainly used as the sole source of energy and carbon. In batch culture, the growth yield per mole of electrons transported through the respiratory system under denitrifying conditions was about half that under aerobic conditions. Similar figures were also obtained in chemostat cultures under glutamate-limited conditions. The decrease in growth yield under denitrifying conditions could be due to the restriction of phosphorylation associated with nitrate reduction to nitrogen gas. 相似文献
2.
This study evaluated the treatment of oil sands process-affected water (OSPW) using a fluidized bed biofilm reactor (FBBR) with granular activated carbon (GAC) as support media. The bioreactor was operated for 120 days at different organic and hydraulic loading rates. The combined GAC adsorption and biodegradation process removed 51% of chemical oxygen demand (COD), 56% of acid-extractable fraction (AEF) and 96% of classical naphthenic acids (NAs) under optimized operational conditions. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lower degree, on the hydraulic loading rate (HLR). Further ultra performance liquid chromatography/high resolution mass spectroscopy (UPLC/HRMS) analysis showed that the removal of classical NAs increased as the carbon number increased. Compared with planktonic bacterial community in OSPW, more diverse microbial structures were found in biofilms colonized on the surface of GAC after 120-day treatment, with various carbon degraders namely Polaromonas jejuensis, Algoriphagus sp., Chelatococcus sp. and Methylobacterium fujisawaense in the GAC-biofilm reactor. The results of this study, therefore, showed that the GAC-biofilm seems to be a promising biological treatment method for OSPW remediation. 相似文献
3.
Md Shahinoor Islam Tao Dong Kerry N. McPhedran Zhiya Sheng Yanyan Zhang Yang Liu Mohamed Gamal El-Din 《Biodegradation》2014,25(6):811-823
Treatment of oil sands process-affected water (OSPW) using biodegradation has the potential to be an environmentally sound approach for tailings water reclamation. This process is both economical and efficient, however, the recalcitrance of some OSPW constituents, such as naphthenic acids (NAs), require the pre-treatment of raw OSPW to improve its biodegradability. This study evaluated the treatment of OSPW using ozonation followed by fluidized bed biofilm reactor (FBBR) using granular activated carbon (GAC). Different organic and hydraulic loading rates were applied to investigate the performance of the bioreactor over 120 days. It was shown that ozonation improved the adsorption capacity of GAC for OSPW and improved biodegradation by reducing NAs cyclicity. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lesser degree, the hydraulic loading rate (HLR). The combined ozonation, GAC adsorption, and biodegradation process removed 62 % of chemical oxygen demand (COD), 88 % of acid-extractable fraction (AEF) and 99.9 % of NAs under optimized operational conditions. Compared with a planktonic bacterial community in raw and ozonated OSPW, more diverse microbial communities were found in biofilms colonized on the surface of GAC after 120 days, with various carbon degraders found in the bioreactor including Burkholderia multivorans, Polaromonas jejuensis and Roseomonas sp. 相似文献
4.
Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions 总被引:1,自引:0,他引:1
This study reveals for the first time that near-anoxic conditions (dissolved oxygen, DO=0.5 mg/L) can be a favorable operating regime for the removal of the persistent micropollutant carbamazepine by MBR treatment. The removal efficiencies of carbamazepine and sulfamethoxazole by an MBR were systematically examined and compared under near-anoxic (DO=0.5 mg/L) and aerobic (DO>2 mg/L) conditions. Preliminary batch tests confirmed that sulfamethoxazole is amenable to both aerobic and anoxic biotransformation. However, carbamazepine-a known persistent compound-showed degradation only under an anoxic environment. In good agreement with the batch tests, during near-anoxic operation, under a high loading of 750 μg/Ld, an exceptionally high removal (68±10%) of carbamazepine was achieved. In contrast, low removal efficiency (12±11%) of carbamazepine was observed during operation under aerobic conditions. On the other hand, an average removal efficiency of 65% of sulfamethoxazole was achieved irrespective of the DO concentrations. 相似文献
5.
In the present work, novel heterotrophic nitrifying and aerobic denitrifying bacteria have been isolated from greenwater system of coastal aquaculture. Based on the 16S rRNA gene, FAME analysis and biochemical test, the isolates have been identified as Pseudomonas aeruginosa and Achromobacter sp. These have been named as P. aeruginosa strain DBT1BNH3 and Achromobacter sp. strain DBTN3. Denitrifying functional genes such as nitrite reductase (nirS), nitric oxide reductase (qnorB) and nitrous oxide reductase (nosZ) genes have been identified. These strains found to have a 27 kb plasmid coding for nirS and nosZ. The possibility of horizontal transfer of plasmid among Pseudomonadaceae and Alcaligenaceae families in coastal aquaculture has been explored. Further, we have studied combined nitrification and oxygen tolerant denitrification potential in the same isolates. 相似文献
6.
Production and consumption of nitric oxide by denitrifying bacteria under anaerobic and aerobic conditions 总被引:5,自引:0,他引:5
Abstract: Pseudomonas aeruginosa, P. stutzeri and Azospirillum brasilense showed highest NO production rates and NO consumption rate constants when anaerobically grown cells were tested under anaerobic conditions. Aerobic assay conditions resulted in 20–75-fold lower NO production rates. NO consumption rate constants, however, decreased by less than a factor of four. NO consumption activity was observed even in aerobically grown P. aeruginosa , provided the assay was done under anaerobic conditions. Obviously, NO consumption was less O2 -sensitive than NO production so that compensation between production and consumption occurred at lower NO mixing ratios under aerobic than under anaerobic conditions. 相似文献
7.
Bioconversion of 2,4-diamino-6-nitrotoluene to a novel metabolite under anoxic and aerobic conditions. 总被引:1,自引:1,他引:1 下载免费PDF全文
Under nitrate-reducing, nongrowth conditions, a Pseudomonas fluorescens species reduced 2,4,6-trinitrotoluene to aminodinitrotoluenes, which were then further reduced to diaminonitrotoluenes. 2,4-Diamino-6-nitrotoluene (2,4-DANT) was further transformed to a novel metabolite, 4-N-acetylamino-2-amino-6-nitrotoluene (4-N-AcANT), while 2,6-diamino-4-nitrotoluene (2,6-DANT) was persistent. Efforts to further degrade 2,4-DANT and 2,6-DANT under aerobic, nitrogen-limited conditions were unsuccessful; 2,6-DANT remained persistent, and 2,4-DANT was again transformed to the 4-N-AcANT compound. 相似文献
8.
9.
《Process Biochemistry》2010,45(6):919-928
2-Methylquinoline is a common organic contaminant in environment. Its degradation in wastewater treatment system has not been fully explored. In this study, batch experiments were conducted to investigate the biodegradation of 2-methylquinoline by activated sludge under both aerobic and denitrifying conditions. The results showed that 2-methylquinoline was degraded under both conditions, but the degradation under aerobic condition was significantly faster than that under denitrifying condition. Total organic carbon (TOC) residues were detected in the final effluent under both conditions, indicating the formation of recalcitrant metabolites. Further analysis identified 1,2,3,4-tetrahydro-2-methylquinoline, N,N-diethyl-benzenamine, and 4-ethyl-benzenamine as common metabolites under both conditions. 4-Butyl-benzenamine and 2,6-diethyl-benzenamine were additional metabolites under the aerobic condition, whereas 2-methyl-4-quinolinol was exclusive to the denitrifying condition. Most of these metabolites were further degraded during the treatment process. 1,2,3,4-Tetrahydro-2-methylquinoline, however, remained in the final effluent under both conditions, implying its persistence in the environment. It can be concluded that 2-methylquinoline undergoes the similar degradation pathway under both treatment conditions. 相似文献
10.
【背景】稳定短程硝化是实现城市污水厌氧氨氧化技术的瓶颈,目前国内外关于游离亚硝酸(Free nitrous acid,FNA)对硝化菌活性的影响大多是在曝气条件下进行研究,鲜有关于缺氧条件下FNA对硝化菌活性影响的报道。【目的】探究好氧和缺氧下FNA对氨氧化菌(Ammonia oxidizing bacteria,AOB)和亚硝酸盐氧化菌(Nitrite oxidizing bacteria,NOB:Nitrospira和Nitrobacter)活性的抑制影响。【方法】采用序批式反应器(Sequencing batch reactor,SBR),基于混合液悬浮固体浓度(Mixed liquid suspended solids,MLSS)为8 300 mg/L的全程硝化污泥条件,通过批次试验分别考察好氧和缺氧下FNA(初始浓度为1.16 mg/L)处理48 h后,AOB和NOB活性的变化情况。【结果】好氧FNA处理活性污泥48 h后,FNA浓度维持在1.16-1.17 mg/L,游离氨(Free ammonia,FA)浓度小于0.017 mg/L,AOB、Nitrospira、Nitrobacter丰度均未发生明显变化;过曝气至99 h时,与空白组相比,比氨氮氧化速率(r~+_(NH4-N))、比亚硝酸盐氮氧化速率(r_(NO2-N))均出现小幅下降,分别由3.5、4.828 mg N/(g VSS·h)降至3.3、4.668 mg N/(g VSS·h),且亚硝酸盐氮累积率(Nitrite accumulation rate,NAR)始终低于33.2%。缺氧FNA处理活性污泥48 h后,FNA浓度维持在0.64-1.16 mg/L,FA浓度低于0.039 mg/L,AOB丰度变化较小,而Nitrospira、Nitrobacter丰度均明显下降,分别由3.002 9×10~9、4.245×10~8 copies/g VSS降至1.666 5×10~8、5.163 8×10~7 copies/g VSS;过曝气至99 h时,与空白组相比,r~+_(NH4-N)值下降幅度较小,而r_(NO2-N)值明显降低,由4.828 mg N/(g VSS·h)降至0.007 mg N/(g VSS·h),且在过曝气0-292 h内,NAR均大于94%。【结论】好氧FNA处理活性污泥48 h后对AOB和NOB无明显抑制作用,但缺氧FNA处理活性污泥48 h后对AOB具有轻微抑制作用,而对NOB具有强烈的抑制作用,可以实现稳定的短程硝化。 相似文献
11.
Alterations of neuronal nuclear matrix and chromatin structure after irradiation under aerobic and anoxic conditions 总被引:1,自引:0,他引:1
This study was undertaken to determine if structural alterations of the bulk chromatin and the amount of protein associated with the nuclear matrix in cerebellar neurons depend on radiation dose and a cell's state of oxygenation. After irradiation with 2.5 to 25.0 Gy under both aerobic and anoxic conditions, the sensitivity of the neuronal chromatin to m. nuclease digestion increase linearly with dose up to about 5 Gy, beyond which there was no further increase. The same increase in accessibility of chromatin to micrococcal nuclease digestion was observed when neuronal nuclei were irradiated at 4 degrees C. Neuronal nuclei were stained with propidium iodide (PI) for DNA and with fluorescein isothiocyanate (FITC) for protein, both before and after complete digestion with DNase I, and analyzed by flow cytometry. There was no change in either the PI (P greater than 0.4) or the FITC (P greater than 0.9) fluorescence of undigested nuclei after irradiation. For the DNase I digested nuclei, the PI fluorescence was unchanged after irradiation (P greater than 0.4), but the FITC fluorescence increased significantly (P less than 0.02). This increase in the FITC fluorescence was linear with dose up to about 5 Gy, beyond which there was no further increase. The flow cytometry results from DNase I digested nuclei were identical for neurons irradiated under aerobic or anoxic conditions, indicating that this phenomenon is oxygen independent. This increase in FITC fluorescence after irradiation was inhibited at ice-cold temperatures and probably reflects an increase in protein content at the nuclear matrix that requires metabolism. This may explain our previously observed resistance of nuclear matrix-associated DNA to digestion by DNase I. This protein increase at the nuclear matrix appears to follow "saturation" kinetics identical to that previously reported for repair of DNA strand breaks in cerebellar neurons. However, the exact molecular nature of this process and its role in DNA repair or cell survival remains to be determined. 相似文献
12.
一株异养硝化-反硝化不动杆菌的分离鉴定及脱氮活性 总被引:4,自引:0,他引:4
[目的]分离筛选并鉴定一株异养硝化-反硝化细菌,并探讨其在脱氮中的作用.[方法]富集培养分离筛选微生物,通过形态观察和生理生化特征及16S rDNA鉴定细菌,定时测定其OD600研究生长曲线,正交试验研究其脱氮影响因素和最佳条件,与污水处理厂活性污泥共同作用检验其脱氮活性.[结果]分离到一株异养硝化-反硝化细菌,鉴定结果表明是一株不动杆菌,命名为Acinetobacter sp.YF14,这是已知报道的第一株进行异养硝化和好氧反硝化的不动杆菌.该菌在12 h时进入对数期,22 h时进入稳定期,45 h以后进入衰亡期.该菌能进行异养硝化,3d后氨氮和总氮的去除率可以达到92%和91%,且无硝酸盐氮和亚硝酸盐氮积累.好氧条件下该菌能进行反硝化,在硝酸盐和亚硝盐培养基中均能将氮几乎完全去除.对该菌脱氮的影响程度大小依次为转速>接种量>碳源>碳氮比> pH.当转速为160 r/min,碳源取葡萄糖,接种量1%,碳氮比为8∶1,pH为6.5时,脱氮效果最好.该菌株可以提高活性污泥对于生活污水总氮脱除率约30%.[结论]菌YF14可以明显加强活性污泥脱氮效果,显示了良好的应用前景. 相似文献
13.
A novel heterotrophic nitrifying and aerobic denitrifying bacterium, KTB, was isolated from activated sludge flocci collected from a biological aerated filter according to the modified Takaya method and identified as Pseudomonas stutzeri by 16S rDNA gene sequence analysis. When shaking-cultured in the presence of 4.331 mmol/L of nitrate, 4.511 mmol/L of nitrite and 4.438 mmol/L of ammonium, the strain grew fast, with μmax being 0.42, 0.45, and 0.56/h, and displayed high nitrogen removal efficiency, with nitrogen removal rate being 0.239, 0.362, and 0.361 mmol/L/h and nitrogen removal ratio being 99.1, 100.0, and 100.0% in 18 h, respectively. The removal mainly occurred in the logarithmic phase. Nitrite accumulation did not affect denitrification performance. Nitrate concentration was below the detectable limit during the whole growth cycle when ammonium was used as sole nitrogen source. It tolerated high DO level and exhibited excellent aggregation ability. A possible pathway involved in the nitrogen removal process, which demonstrated a full nitrification and denitrification route, was speculated. The strain might be a great candidate for biological removal of nitrogen compounds from wastewater. 相似文献
14.
15.
A comparative study of the development of Eimeria nieschulzi in vitro under aerobic and reducing conditions 总被引:3,自引:0,他引:3
Sporozoites of the rat coccidian, Eimeria nieschulzi Dieben, 1924 (Apicomplexa: Eimeriidae), were inoculated onto monolayers of normal rat kidney (NRK) fibroblasts and cultured either under aerobic (5% CO2/95% air) or reducing (desiccator jars modified into candle jars) conditions in RPMI-1640 supplemented with 5% fetal bovine serum, sodium bicarbonate, and antibiotics. Under aerobic conditions, first-generation meronts were observed at 2 days postinoculation (DPI) and, except for individual third-generation meronts that were seen at 5 and 6 DPI, no further development was noted. Under reducing conditions, however, first-generation meronts observed at 2-5 DPI underwent additional development to form second-generation meronts (3-5 DPI), third-generation meronts (3-7 DPI), and a small number of fourth-generation meronts (5-8 DPI). Both second- and third-generation meronts were abnormal, exhibiting gigantism although the merozoites produced appeared normal. The gradual degeneration of cell monolayers under reducing conditions prevented further observations beyond 8 DPI. These results suggest that atmospheric conditions play an important role in the development of E. nieschulzi and maintenance of reducing conditions may be one key to achieving enhanced development of some species of coccidia in vitro. 相似文献
16.
Biodegradation of (E)-phytol [3,7,11, 15-tetramethylhexadec-2(E)-en-1-ol] by two bacterial communities isolated from recent marine sediments under aerobic and denitrifying conditions was studied at 20 degrees C. This isoprenoid alcohol is metabolized efficiently by these two bacterial communities via 6,10, 14-trimethylpentadecan-2-one and (E)-phytenic acid. The first step in both aerobic and anaerobic bacterial degradation of (E)-phytol involves the transient production of (E)-phytenal, which in turn can be abiotically converted to 6,10,14-trimethylpentadecan-2-one. Most of the isoprenoid metabolites identified in vitro could be detected in a fresh sediment core collected at the same site as the sediments used for the incubations. Since (E)-phytenal is less sensitive to abiotic degradation at the temperature of the sediments (15 degrees C), the major part of (E)-phytol appeared to be biodegraded in situ via (E)-phytenic acid. (Z)- and (E)-phytenic acids are present in particularly large quantities in the upper section of the core, and their concentrations quickly decrease with depth in the core. This degradation (which takes place without significant production of phytanic acid) is attributed to the involvement of alternating beta-decarboxymethylation and beta-oxidation reaction sequences induced by denitrifiers. Despite the low nitrate concentration of marine sediments, denitrifying bacteria seem to play a significant role in the mineralization of (E)-phytol. 相似文献
17.
Abstract From polluted river sediment, two bacterial species were isolated which utilized p -cresol as the sole source of carbon when grown in coculture under nitrate-reducing conditions. One species, PC-07, metabolized p -cresol (pCr) anaerobically to p -hydroxybenzoate (pOHB), which in turn was further metabolized by the second isolate, PB-04. The PC-07 isolate was unable to degrade and utilize pOHB, and PB-04 was unable to utilize pCr, thereby demonstrating a syntrophic relationship for pCr utilization under anaerobic conditions. Nitrate served as external electron acceptor for both microorganisms under anaerobic conditions and was reduced via NO2 − and N2 O to N2 . pCr, therefore, appears to be metabolized to ring fission products via the formation of pOHB under nitrate reducing conditions, with the metabolism being mediated by a 2-member microbiol food chain. 相似文献
18.
Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review 总被引:6,自引:0,他引:6
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic
hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor
to oxygen, and denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials.
Providing both nitrate and microaerophilic levels of oxygen may result in oxidation of the stable benzene rings in aromatic
contaminants and allow for the intermediates of this oxidation to degrade via denitrification. The effects of using mixed
electron acceptors on biodegradation of subsurface contaminants is unclear. Below some critical oxygen threshold, aerobic
biodegradation is inhibited, however high levels of oxygen inhibit denitrification. The mechanisms which regulate electron
transfer to oxygen and nitrate are complex. This review: 1) describes the factors which may affect the utilization of oxygen
and nitrate as dual electron acceptors during biodegradation; 2) summarizes the incidence of dual use of nitrate and oxygen
(aerobic denitrification); and 3) presents evidence of the effectiveness of bioremediation under mixed oxygen/nitrate conditions.
Received 08 November 1995/ Accepted in revised form 09 June 1996 相似文献
19.
Simultaneous removal of 2-chlorophenol, phenol, p-cresol and p-hydroxybenzaldehyde under nitrifying conditions: kinetic study 总被引:1,自引:0,他引:1
The kinetic behavior of a stable nitrifying consortium exposed to 2-chlorophenol (2-CP), phenol, p-cresol and p-hydroxybenzaldehyde (p-OHB) was evaluated in batch assays. Phenolic compounds were evaluated either individually or in mixture. In individual assays, 2-CP inhibited stronger the nitrification, diminishing the ammonium consumption efficiency (16%) and the nitrate production rate (at 91%). Nonetheless, the consumption efficiencies for all phenolics were of 100%. On the other hand, in mixture, the inhibitory effect of 2-CP diminished significantly, since ammonium consumption efficiency and nitrate production rate were improved. Consumption efficiencies for most of the phenolic compounds were high. Furthermore, the kinetic of 2-CP oxidation was 2.4-fold-faster than the individual assays. Finally, the experimental results showed the potential of nitrifying consortium for removing 2-CP, phenol, p-cresol and p-OHB. This is the first work showing the simultaneous removal of these pollutants and also this information might be useful for treating wastewaters of chemical complexity. 相似文献
20.
Valle Antonio Fernández Maikel Ramírez Martín Rovira Roger Gabriel David Cantero Domingo 《Bioprocess and biosystems engineering》2018,41(8):1165-1175
Bioprocess and Biosystems Engineering - Biological desulfurization has proven to be a process that is technically and economically feasible on using biotrickling filters that can be performed under... 相似文献