首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
核不均一核糖核蛋白(heterogeneous nuclear ribonucleoprotein,hnRNP)是一类多功能RNA结合蛋白家族,能与RNA聚合酶Ⅱ合成的新生转录本结合,并以复合体形式参与转录本稳定与成熟调控过程. hnRNP A1是hnRNPs家族重要成员,不仅广泛参与癌症与神经系统疾病相关基因的可变剪接调控,还在病毒侵染、细胞衰老及应激恢复中发挥重要作用.此外,hnRNP A1作为典型的RNA结合蛋白,在转录与可变剪接调控过程中,可通过动态三维结构识别特定序列.本文总结了hnRNP A1的最新研究进展,以期为进一步探究hnRNP A1在疾病发生中的功能研究提供参考.  相似文献   

3.
4.
Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5′ splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12.  相似文献   

5.
6.
Control of nuclear export of hnRNP A1   总被引:1,自引:0,他引:1  
  相似文献   

7.
Individual members of the serine-arginine (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) A/B families of proteins have antagonistic effects in regulating alternative splicing. Although hnRNP A1 accumulates predominantly in the nucleus, it shuttles continuously between the nucleus and the cytoplasm. Some but not all SR proteins also undergo nucleo-cytoplasmic shuttling, which is affected by phosphorylation of their serine/arginine (RS)-rich domain. The signaling mechanisms that control the subcellular localization of these proteins are unknown. We show that exposure of NIH-3T3 and SV-40 transformed green monkey kidney (COS) cells to stress stimuli such as osmotic shock or UVC irradiation, but not to mitogenic activators such as PDGF or EGF, results in a marked cytoplasmic accumulation of hnRNP A1, concomitant with an increase in its phosphorylation. These effects are mediated by the MKK(3/6)-p38 pathway, and moreover, p38 activation is necessary and sufficient for the induction of hnRNP A1 cytoplasmic accumulation. The stress-induced increase in the cytoplasmic levels of hnRNP A/B proteins and the concomitant decrease in their nuclear abundance are paralleled by changes in the alternative splicing pattern of an adenovirus E1A pre-mRNA splicing reporter. These results suggest the intriguing possibility that signaling mechanisms regulate pre-mRNA splicing in vivo by influencing the subcellular distribution of splicing factors.  相似文献   

8.
9.
We have identified and obtained the full-length clone of RREBP49, a human nuclear factor which specifically interacts with the Rev-responsive element (RRE) sequence of human immunodeficiency virus type 1. Sequence analysis revealed that RREBP49 is highly homologous to hnRNP F protein and contains three repeated RNA-binding domains. Binding assays demonstrated that Rev and RREBP49 bind to different subregions on the RRE sequence and that binding is mutually nonexclusive. Blocking of endogenous RREBP49 expression by an antisense construct increases Rev activity in CV-1 cells, indicating that RREBP49 and Rev may play antagonistic roles in HIV-1 replication. RREBP49 may function as a splicing factor or a nuclear retention factor for unspliced mRNAs. However, only a slight decrease of Rev activity was observed when exogenous RREBP49 was introduced into CV-1 cells by pSVL-RREBP49 expression vector. This may be explained by a high endogenous level of RREBP49 which is above optimal. Alternatively, additional cellular factors may be required for RREBP49-mediated inhibition of Rev.  相似文献   

10.
The p53-induced Wig-1 gene encodes a double stranded RNA-binding zinc finger protein. We generated Saos-2 osteosarcoma cells expressing tetracycline-inducible Flag-tagged human Wig-1. Induction of Wig-1 expression by doxycycline inhibited cell growth in a long-term assay but did not cause any changes in cell cycle distribution nor increased fraction of apoptotic cells. Using co-immunoprecipitation and mass spectrometry, we identified two Wig-1-binding proteins, hnRNP A2/B1 and RNA Helicase A, both of which are involved in RNA processing. The binding was dependent on the presence of RNA. Our results establish a link between the p53 tumor suppressor and RNA processing via hnRNPA2/B1 and RNA Helicase A.  相似文献   

11.
12.
Intersectin 1 (ITSN1) is a conserved adaptor protein implicated in endocytosis, regulation of actin cytoskeleton rearrangements and mitogenic signaling. Its expression is characterized by multiple alternative splicing. Here we show neuron-specific expression of ITSN1 isoforms containing exon 20, which encodes five amino acid residues in the first SH3 domain (SH3A). In vitro binding experiments demonstrated that inclusion of exon 20 changes the binding properties of the SH3A domain. Endocytic proteins dynamin 1 and synaptojanin 1 as well as GTPase-activating protein CdGAP bound the neuron-specific variant of the SH3A domain with higher affinity than ubiquitously expressed SH3A. In contrast, SOS1, a guanine nucleotide exchange factor for Ras, and the ubiquitin ligase Cbl mainly interact with the ubiquitously expressed isoform. These results demonstrate that alternative splicing leads to the formation of two pools of ITSN1 with potentially different properties in neurons, affecting ITSN1 function as adaptor protein.  相似文献   

13.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

14.
As well as generating protein isoform diversity, in some cases alternative splicing generates RNAs that harbor premature termination codons and that are subject to nonsense-mediated decay (NMD). We previously identified an apparent pseudo-exon in the rat α-tropomyosin (Tpm1) gene as a probable genuine alternatively spliced exon that causes NMD when spliced into Tpm1 RNA. Here, we report the analysis of cis-acting splicing regulatory elements within this “nonsense exon.” Guided by the data set of predicted splicing enhancer and silencer elements compiled by Zhang and Chasin, we made a series of mutations through the nonsense exon and found that like authentic exons it is densely packed with enhancer and silencer elements. Strikingly, 11 of 13 tested mutations behaved as predicted computationally. In particular, we found that a G-rich silencer at the 5′ end, which is crucial for skipping of the nonsense exon, functions by binding hnRNP-H and F.  相似文献   

15.
Few details are known about how the human immunodeficiency virus type 1 (HIV-1) genomic RNA is trafficked in the cytoplasm. Part of this process is controlled by the activity of heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2). The role of hnRNP A2 during the expression of a bona fide provirus in HeLa cells is investigated in this study. Using immunofluorescence and fluorescence in situ hybridization techniques, we show that knockdown of hnRNP A2 expression in HIV-1-expressing cells results in the rapid accumulation of HIV-1 genomic RNA in a distinct, cytoplasmic space that corresponds to the microtubule-organizing center (MTOC). The RNA exits in the nucleus and accumulates at the MTOC region as a result of hnRNP A2 knockdown even during the expression of a provirus harboring mutations in the hnRNP A2-response element (A2RE), the expression of which results in nuclear retention of genomic RNA. We also demonstrate that hnRNP A2 expression is required for downstream trafficking of genomic RNA from the MTOC in the cytoplasm. Genomic RNA localization at the MTOC that was both the result of hnRNP A2 knockdown and the overexpression of Rab7-interacting lysosomal protein had little effect on pr55Gag synthesis but negatively influenced virus production and infectivity. These data indicate that altered HIV-1 genomic RNA localization modulates viral assembly and that the MTOC serves as a central site to which HIV-1 genomic RNA converges following its exit from the nucleus, with the host protein, hnRNP A2, playing a central role in taking it to and from this site in the cell.  相似文献   

16.
Aberrant expression of Protein Arginine Methyltransferases (PRMTs) has been observed in several cancer types, including breast cancer. We previously reported that the PRMT1v2 isoform, which is generated through inclusion of alternative exon 2, is overexpressed in breast cancer cells and promotes their invasiveness. However, the precise mechanism by which expression of this isoform is controlled and how it is dysregulated in breast cancer remains unknown. Using a custom RNA interference-based screen, we identified several RNA binding proteins (RBP) which, when knocked down, altered the relative abundance of the alternatively spliced PRMT1v2 isoform. Amongst the top hits were SNW Domain containing 1 (SNW1) and RBP-associated with lethal yellow mutation (RALY), which both associated with the PRMT1 pre-mRNA and upon depletion caused an increase or decrease in the relative abundance of PRMT1v2 isoform mRNA and protein. Most importantly, a significant decrease in invasion was observed upon RALY knockdown in aggressive breast cancer cells, consistent with targeting PRMT1v2 directly, and this effect was rescued by the exogenous re-expression of PRMT1v2. We show that SNW1 expression is decreased, while RALY expression is increased in breast cancer cells and tumours, which correlates with decreased patient survival. This work revealed crucial insight into the mechanisms regulating the expression of the PRMT1 alternatively spliced isoform v2 and its dysregulation in breast cancer. It also provides proof-of-concept support for the development of therapeutic strategies where regulators of PRMT1 exon 2 alternative splicing are targeted as an approach to selectively reduce PRMT1v2 levels and metastasis in breast cancer.  相似文献   

17.
Heterogeneous ribonucleoprotein A1 (hnRNP A1) is a prototype for the family of eukaryotic RNA processing proteins containing the common RNA recognition motif (RRM). The region consisting of residues 1-195 of hnRNP A1 is referred to as UP1. This region has two RRMs and has a high affinity for both single-stranded RNA and the human telomeric repeat sequence d(TTAGGG)(n). We have used UP1's novel DNA binding to investigate how RRMs bind nucleic acid bases through their highly conserved RNP consensus sequences. Nine complexes of UP1 bound to modified telomeric repeats were investigated using equilibrium fluorescence binding and X-ray crystallography. In two of the complexes, alteration of a guanine to either 2-aminopurine or nebularine resulted in an increase in K(d) from 88nM to 209nM and 316nM, respectively. The loss of these orienting interactions between UP1 and the substituted base allows it to flip between syn and anti conformations. Substitution of the same base with 7-deaza-guanine preserves the O6/N1 contacts but still increases the K(d) to 296nM and suggests that it is not simply the loss of affinity that gives rise to the base mobility, but also the stereochemistry of the specific contact to O6. Although these studies provide details of UP1 interactions to nucleic acids, three general observations about RRMs are also evident: (1) as suggested by informatic studies, main-chain to base hydrogen bonding makes up an important aspect of ligand recognition (2) steric clashes generated by modification of a hydrogen bond donor-acceptor pair to a donor-donor pair are poorly tolerated and (3) a conserved lysine position proximal to RNP-2 (K(106)-IFVGGI) orients the purine to allow stereochemical discrimination between adenine and guanine based on the 6-position. This single interaction is well-conserved in known RRM structures and appears to be a broad indicator for purine preference in the larger family of RRM proteins.  相似文献   

18.
《FEBS letters》2014,588(9):1515-1522
Amyloid fibrils play important roles in HIV-1 infection. We found peptides derived from the HIV-1 gp120 co-receptor binding region, which are defined as enhancing peptides (EPs), could form amyloid fibrils and remarkably enhance HIV-1 infection. EPs bound to the virus and promoted the interaction between HIV-1 and target cells. The antiviral efficacy of antiretroviral drugs (ARVs) was substantially impaired in the presence of EPs. Epigallocatechin gallate (EGCG) could both inhibit the formation of fibrils composed of EPs and counteract the EP-mediated enhancement of HIV-1 infection. Our findings identify viral derived amyloid fibrils that hold potential for biochemical applications.Structured summary of protein interactionsEP1 and EP1 bind by fluorescence technology (View interaction)EP2 and EP2 bind by fluorescence technology (View interaction)EP3 and EP3 bind by fluorescence technology (View interaction)SEVI and SEVI bind by fluorescence technology (View interaction)EP1 and EP1 bind by transmission electron microscopy (View interaction)EP2 and EP2 bind by transmission electron microscopy (View interaction)EP3 and EP3 bind by transmission electron microscopy (View interaction)SEVI and SEVI bind by transmission electron microscopy (View interaction)  相似文献   

19.
RBFOX1 and RBFOX2 are alternative splicing factors that are predominantly expressed in the brain and skeletal muscle. They specifically bind the RNA element UGCAUG, and regulate alternative splicing positively or negatively in a position-dependent manner. The molecular basis for the position dependence of these and other splicing factors on alternative splicing of their targets is not known. We explored the mechanisms of RBFOX splicing activation and repression using an MS2-tethering assay. We found that the Ala/Tyr/Gly-rich C-terminal domain is sufficient for exon activation when tethered to the downstream intron, whereas both the C-terminal domain and the central RRM are required for exon repression when tethered to the upstream intron. Using immunoprecipitation and mass spectrometry, we identified hnRNP H1, RALY, and TFG as proteins that specifically interact with the C-terminal domain of RBFOX1 and RBFOX2. RNA interference experiments showed that hnRNP H1 and TFG modulate the splicing activity of RBFOX1/2, whereas RALY had no effect. However, TFG is localized in the cytoplasm, and likely modulates alternative splicing indirectly.  相似文献   

20.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. An almost identical SMN2 gene is unable to compensate for this deficiency because a single C‐to‐T transition at position +6 in exon‐7 causes skipping of the exon by a mechanism not yet fully elucidated. We observed that the C‐to‐T transition in SMN2 creates a putative binding site for the RNA‐binding protein Sam68. RNA pull‐down assays and UV‐crosslink experiments showed that Sam68 binds to this sequence. In vivo splicing assays showed that Sam68 triggers SMN2 exon‐7 skipping. Moreover, mutations in the Sam68‐binding site of SMN2 or in the RNA‐binding domain of Sam68 completely abrogated its effect on exon‐7 skipping. Retroviral infection of dominant‐negative mutants of Sam68 that interfere with its RNA‐binding activity, or with its binding to the splicing repressor hnRNP A1, enhanced exon‐7 inclusion in endogenous SMN2 and rescued SMN protein expression in fibroblasts of SMA patients. Our results thus indicate that Sam68 is a novel crucial regulator of SMN2 splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号