首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Forest harvesting alters the cycling of nitrogen (N) within temperate forest systems in a manner that may influence atmospheric nitrous oxide (N2O) concentrations. This paper investigates, over a single growing season within the Acadian Forest region of Atlantic Canada, soil N2O fluxes across a clearcut harvest red spruce forest chronosequence that includes an old growth reference site (>125 years). A pulse of soil N2O at ~1–2 years was observed after clearcut harvesting, followed by an exponential decay to a baseline level within one to two decades after the harvesting event. No significant differences between fluxes from the forest sites >20 years of age and the reference old growth site (>125 years) were observed. Soils within the chronosequence acted as both sources and sinks for N2O through the growing season. Low soil N availability was identified as the likely factor limiting soil N2O flux responses to changes in soil temperature and moisture in situ at most sites. This was confirmed by controlled laboratory experiments that measured soil N2O flux responses to moisture, temperature and N amendments. Without N amendments, soils act as an elevated sink for N2O under increased temperature. However, when soil N was not limiting, N2O flux responded primarily to moisture. Overall, the study suggests that moist temperate forest soils that are N-limited can act as a transient source of N2O following clearcut harvesting during the growing season, and that the decrease in the release of N2O from soils following harvesting follows an exponential pattern.  相似文献   

2.
The optimum concentrations of the plant hormones for in vitro regeneration and subsequent effect of auxins on rooting (in vitro and ex vitro) of shoots of Basella alba L. have been investigated in present study. Nodal shoot segments were used as explants to initiate the cultures. The bud breaking from explants was observed within 1 week of incubation on agar gelled Murashige and Skoog’s (MS) medium. Multiple axillary shoots (7.30 ± 0.56 shoots per explant) were induced on MS medium supplemented with 2.0 mg/L 6-benzylaminopurine (BAP). The shoots were multiplied (maximum 17.10 ± 0.44 shoots per explant) on the same medium fortified with 0.5 mg/L each of BAP and Kin (Kinetin) +0.1 mg/L IAA. These shoots were excised and rooted in vitro (10.73 ± 0.92 roots per shoot) on half-strength MS medium augmented with 2.0 mg/L indole-3 butyric acid (IBA). Hundred percentage success rates have been achieved by ex vitro rooting of the in vitro regenerated shoots with IBA at 300 mg/L. The in vitro and ex vitro rooted shoots were acclimatized in greenhouse and subsequently transferred to the natural field conditions where 100 % survival rate was reported. The ex vitro rooting method was found more advantageous than in vitro rooting in terms of time, energy and survival percentage of B. alba. A comparative foliar micromorphological study of B. alba was conducted to understand the micromorphological changes in plants while shifting from in vitro to the in vivo conditions in terms of variations in stomatal index, venation pattern and vein density, and the arrangement of crystals. The study could help in understanding the response of in vitro raised plants towards in vivo environment.  相似文献   

3.
Multi-decadal Changes in Water Table Levels Alter Peatland Carbon Cycling   总被引:1,自引:0,他引:1  
Globally, peatlands store a large quantity of soil carbon that can be subsequently modified by hydrologic alterations from land-use change and climate change. However, there are many uncertainties in predicting how carbon cycling and greenhouse gas emissions are altered by long-term changes in hydrology. Therefore, the goal of this study was to quantify how multi-decadal manipulations of water table (WT) levels affected carbon cycling (plant production and net ecosystem exchange from three eddy covariance towers) in a peatland complex modified by levee construction, which created a wetter area up-gradient of the levee (mean WT was 12.1 cm below the surface), a dry area below the levee (36.8 cm), and an adjacent reference site not affected by the levee (21.6 cm). We found that mean total plant production was greatest in the reference site (311.9 g C m?2 y?1), followed by the dry site (290.5 g C m?2 y?1), and lowest in the wet site (227.1 g C m?2 y?1). Net ecosystem exchange during the growing season was negative for all sites (sink), with the wet site having the greatest sink and the dry site having the lowest sink. Ecosystem respiration increased and CH4 emissions decreased with a decreasing WT level. This research demonstrates that human alteration of peatland WT levels can have long-term (>50 years) consequences on peatland carbon cycling.  相似文献   

4.
Feral pigs (Sus scrofa) occupy many different habitats worldwide. Their rooting foraging behaviour poses a serious threat to biodiversity as the resulting soil disturbance alters ecosystem structure and function. Understanding what characteristics are important in selecting rooting locations can be used to predict the impact of pigs on ecosystems. We investigated patch selection for rooting by feral pigs at two spatial scales: (1) habitat variables at a site level, and (2) dependency between observations in a spatial context. Seasonal influences on the modelled environmental variables were also examined. We applied a generalised linear modelling approach and model-averaging to explain the relative importance of variables, as measured by the standardised parameter estimates and unconditional variance. Soil texture, rock cover, soil compaction and sand texture were important explanatory variables in the presence of pig rooting. Soil compaction and distance to roads had a negative influence. The highest ranking model included seven explanatory variables with a 41 % chance that this is the Kullback–Leibler best model. Six of the 128 candidate models were in the 95 % confidence set indicating low model uncertainty. Although no differences in pig rootings were detected between seasons, most rooting (65.7 %) occurred during the dry season with soil and sand texture having the strongest effect. This study highlights how pig control programmes can focus limited resources on either the strategic positioning of control devices (e.g., traps and baits) to either reduce the number of pigs or help prioritise habitats of high conservation value for protection (e.g., exclusion fencing).  相似文献   

5.
A thick gingival biotype is a requisite for good periodontal health. It has important role in resisting trauma and subsequent gingival recession. The gingival thickness is a significant predictor of clinical outcome of periodontal surgeries. Various surgical procedures are used to increase the gingival thickness. The present study incorporated the innovative step of placement of chorion membrane to objectively evaluate the increase in thickness of gingival biotype during periodontal pocket therapy. The patients in age group between 25 and 45 years with chronic periodontitis, indicated for flap surgery were selected for the study. The sites with pocket depth of 6–8 mm in the mandibular anterior teeth were divided into test and control sites. Periodontal flap surgery was carried at both the sites and chorion membrane was placed at the test sites. The gingival thickness measurement was assessed using a markings marked on injection needle, these markings were read using digital vernier caliper, pre and post operatively. The baseline values of gingival thickness at test site (1.04 ± 0.19 at mid buccal region, 1.24 ± 0.20 at mid papillary) and control site (0.94 ± 0.11 at mid buccal region, 1.14 ± 0.11 at mid papillary region) showed no statistically significant difference. At test sites, 6 weeks post treatment (1.36 ± 0.16 at mid buccal region and 1.48 ± 0.17 at mid papillary region) as compared to control sites (1.06 ± 0.11 at mid buccal region, 1.24 ± 0.11 at mid papillary) showed statistically significant increase in gingival thickness (p ≤ 0.05*). The innovative step of placement of chorion membrane during periodontal pocket therapy facilitated increase in the gingival thickness in the areas with thin gingival biotype.  相似文献   

6.
Shallow tube well (STW) water, often contaminated with arsenic (As), is used extensively in Bangladesh for irrigating rice fields in the dry season, leading to potential As accumulation in soils. In the current study the consequences of arsenic from irrigation water and direct surface (0–15 cm) soil application were studied under field conditions with wetland rice culture over 2 years. Twenty PVC cylinders (30-cm length and 30-cm diameter) were installed in field plots to evaluate the mobility and vertical distribution of soil As, As mass balance, and the resulting influences on rice yield and plant-As concentration in Boro (dry season) and transplanted (T.) Aman (wet season) rice over the 2-year growth cycle. Treatments included irrigation-water As concentrations of 0, 1 and 2 mg L?1 (Boro season only) and soil-As concentrations of 10 and 20 mg kg?1. Following the 2-year cropping sequence the major portion (39.3–47.6%) of the applied arsenic was retained within the rooting zone at 0–15 cm depth, with 14.7–19.5% of the total applied As at the 5–10 cm and 10–15 cm soil depths compared to 1.3–3.6% at the 35–40 cm soil depth. These results indicate the relatively low mobility of applied As and the likely continued detrimental accumulation of As within the rooting zone. Arsenic addition in either irrigation water or as soil-applied As resulted in yield reductions from 21 to 74 % in Boro rice and 8 to 80 % in T. Aman rice, the latter indicating the strong residual effect of As on subsequent crops. The As concentrations in rice grain (0.22 to 0.81 µg g?1), straw (2.64 to 12.52 µg g?1) and husk (1.20 to 2.48 µg g?1) increased with increasing addition of As. These results indicate the detrimental impacts of continued long-term irrigation with As-contaminated water on agricultural sustainability, food security and food quality in Bangladesh. A critical need exists for the development of crop and water management strategies to minimize potential As hazard in wetland rice production.  相似文献   

7.
Wild boar (Sus scrofa) are of serious concern in numerous conservation areas such as El Palmar National Park, Argentina, where their increasing abundance affected the iconic palm tree Butia yatay. We assessed the effectiveness of an innovative management control program on wild boar population dynamics and ground rooting area over 10 years. Park personnel recruited and supervised local recreational hunters who regularly conducted controlled still shooting from widely distributed watchtowers and used trained dogs mainly during the first 2 years post-intervention (YPI). We used the detailed records of harvest and hunting effort to estimate time- and stage-specific catch-per-unit-effort (CPUE) indices and stochastic population growth rates (μ). Catch was linearly related to hunting effort except at large effort levels. CPUE indices declined exponentially at 5–7 % month?1 over 0–1 YPI and thereafter stabilized with μ indistinguishable from 0. Relative to baseline levels, culling reduced annual pregnancy rates, the fraction of juveniles and older adults, and ground rooting area below target values (<1.3 %). Incipient population recovery followed one of two periods of marginal hunting effort. The program generated few undesirable collateral effects mainly related to dog-hunting. Mesopredator abundance (foxes) steadily increased following a large outbreak of canine distemper at baseline. The combined use of standardized CPUE indices, body-length data and simple population viability analysis models provided reliable metrics for wild boar trend analysis and management. Unlike a preceding plan, a highly structured multi-stakeholder program proved to be sustainable and brought wild boar abundance to a low-density, unstable equilibrium causing minimal damage.  相似文献   

8.
Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla. Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l?1) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l?1. However, stem cuttings treated with a combination of auxins (2.0 mg l?1 IBA and 1.0 mg l?1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.  相似文献   

9.
Stock mother plants have gained importance in the process of adventitious rooting of woody plants in recent years. The present study reveals the role of the cutting position from a stock mother plant for subsequent rooting. Cuttings of Prunus subhirtella Miq. var. Autumnalis which originated from suckers at the bottom of a tree developed a rooting system of better quality (rooted cutting without callus formation, more main roots) compared to cuttings which originated from shoots at the top of a tree. The latter accumulated significantly more indole-3-acetic acid (IAA) with the highest value of 25.37 μg g?1 FW on the severance date. These cuttings also contained more indole-3-acetyl-aspartate (IAA-Asp) on the second day after severance with the highest value of 4875.95 μg g?1 FW compared to cuttings from the bottom-deriving suckers. The latter metabolised IAA primarily via 2-oxindole-3-acetic acid (oxIAA) and indole-3-methanol because the concentrations of these compounds increased at the base of these cuttings. The highest concentration of oxIAA, 8.3 mg ekv. IAA g?1 FW, was measured 1 h after severance in cuttings from the bottom-derived suckers. With 590.5 ng ekv IAAg?1 FW, the indole-3-methanol values were also significantly higher in the cuttings from the bottom shoots compared with cuttings from the top of the tree.  相似文献   

10.
Globally, non-native ungulates threaten native biodiversity, alter biotic and abiotic factors regulating ecological processes, and incur significant economic costs via herbivory, rooting, and trampling. Removal of non-native ungulates is an increasingly common and crucial first step in conserving and restoring native forests. However, removal is often controversial and there is currently little information on plant community responses to this management action. Here, we examine the response of native and non-native understory vegetation in paired sites inside and outside of exclosures across a 6.5–18.5 year chronosequence of feral pig (Sus scrofa) removal from canopy-intact Hawaiian tropical montane wet forest. Stem density and cover of native plants, species richness of ground-rooted native woody plants, and abundance of native plants of conservation interest were all significantly higher where feral pigs had been removed. Similarly, the area of exposed soil was substantially lower and cover of litter and bryophytes was greater with feral pig removal. Spatial patterns of recruitment were also strongly affected. Whereas epiphytic establishment was similar between treatments, the density of ground-rooted woody plants was four times higher with feral pig removal. Abundance of invasive non-native plants also increased at sites where they had established prior to feral pig removal. We found no patterns in any of the measured variables with time, suggesting that commonly occurring species recover within 6.5 years of feral pig removal. Recovery of species of conservation interest, however, was highly site specific and limited to areas that possessed remnant populations at the time of removal, indicating that some species take much longer (>18.5 years) to recover. Feral pig removal is the first and most crucial step for conservation of native forests in this area, but subsequent management should also include control of non-native invasive plants and outplanting native species of conservation interest that fail to recruit naturally.  相似文献   

11.
James R. Vonesh 《Biotropica》2001,33(3):502-510
I compared species richness and habitat correlates of leaf‐litter herpetofaunal abundance in undisturbed and selectively logged forests, and an abandoned pine plantation in Kibale National Park, Uganda. I sampled 50 randomly located 25 m2 litter plots in each area during the wet and dry seasons in 1997. Ten anuran, five lizard, and three snake species were captured in plots over the study. Assemblage composition was most similar at logged and unlogged sites. The logged forest herpetofauna had higher species richness and abundance than the unlogged forest, but diversity was greater in the unlogged forest due to greater evenness. In contrast, the pine plantation site had the highest richness, abundance, and evenness of the three study sites, but species composition was distinct from the other areas. Herpetofaunal densities were significantly lower in all three areas during the dry season than in the wet season. During the dry season, soil moisture, litter mass, topography, shrub cover, and number of fallen logs were significant positive predictors of herpetofaunal presence in litter plots, but only soil moisture was significant in the wet season. The interaction of moisture and topography appears to be important in determining seasonal patterns of litter herpetofaunal distribution. Comparison of litter herpetofaunal studies across the tropics have shown that mid‐elevation faunas generally support fewer species than lowland faunas. Compared with other tropical mid‐elevation litter faunas, Kibale supports an intermediate number of species, but at lower densities than observed at any other mid‐elevation site reported in the literature.  相似文献   

12.
1. We assessed the relative importance of different scales of spatial and temporal variability on benthic macroinvertebrate assemblage structure in six unpolluted streams in monsoonal Hong Kong using ordination and complementary multivariate analyses. The spatial scales were regions, sites (streams) and sections (riffles) within sites. The temporal scales were years (three, including one with unusually high rainfall), seasons (dry versus wet) and days within seasons. 2. Significant differences in assemblage structure were manifested at all temporal scales. Those at the site scale were most obvious, whereas demarcation of assemblage structure at the section (riffle) scale was smaller, and there was no significant regional differentiation in assemblage structure. Seasonal variability in assemblage structure was greater than that among years or days. 3. Inter‐year differences in assemblage structure were recorded at all sites, and were noted among all years at some sites but not at others. They were recorded more frequently during the dry season, although their occurrence (in pair‐wise comparisons between years) appeared to be related to differences in the monsoonal (wet season) rainfall. 4. Seasonal differences in assemblage structure were strongly evident at all sites. Inter‐site differences were more apparent during the dry season when local (site‐scale) influences on assemblages were stronger. By contrast, wet‐season samples were more variable because of spate‐induced disturbance, and inter‐site differentiation was less distinct. 5. Differences among days at all sites were relatively minor, but shifts attributable to repeated spate‐induced disturbance were evident at some sites during the wet season. 6. Differences at the section scale were recorded more frequently during the dry season, when the extent of within‐site variability among sections was higher, reflecting increased patchiness within sections resulting from increased substratum heterogeneity and/or greater intensity of biotic interactions. 7. Seasonal shifts in macroinvertebrate assemblage structure at a variety of scales in Hong Kong streams are likely to be attributable to monsoonal rains affecting the relative intensity of abiotic disturbance and biotic interactions in accordance with the harsh‐benign hypothesis.  相似文献   

13.
Increases in the magnitude and variability of precipitation events have been predicted for the Chihuahuan Desert region of West Texas. As patterns of moisture inputs and amounts change, soil microbial communities will respond to these alterations in soil moisture windows. In this study, we examined the soil microbial community structure within three vegetation zones along the Pine Canyon Watershed, an elevation and vegetation gradient in Big Bend National Park, Chihuahuan Desert. Soil samples at each site were obtained in mid-winter (January) and in mid-summer (August) for 2 years to capture a component of the variability in soil temperature and moisture that can occur seasonally and between years along this watershed. Precipitation patterns and amounts differed substantially between years with a drought characterizing most of the second year. Soils were collected during the drought period and following a large rainfall event and compared to soil samples collected during a relatively average season. Structural changes within microbial community in response to site, season, and precipitation patterns were evaluated using fatty acid methyl ester (FAME) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses. Fungal FAME amounts differed significantly across seasons and sites and greatly outweighed the quantity of bacterial and actinomycete FAME levels for all sites and seasons. The highest fungal FAME levels were obtained in the low desert scrub site and not from the high elevation oak–pine forests. Total bacterial and actinomycete FAME levels did not differ significantly across season and year within any of the three locations along the watershed. Total bacterial and actinomycete FAME levels in the low elevation desert-shrub and grassland sites were slightly higher in the winter than in the summer. Microbial community structure at the high elevation oak–pine forest site was strongly correlated with levels of NH4 +–N, % soil moisture, and amounts of soil organic matter irrespective of season. Microbial community structure at the low elevation desert scrub and sotol grasslands sites was most strongly related to soil pH with bacterial and actinobacterial FAME levels accounting for site differences along the gradient. DGGE band counts of amplified soil bacterial DNA were found to differ significantly across sites and season with the highest band counts found in the mid-elevation grassland site. The least number of bands was observed in the high elevation oak–pine forest following the large summer-rain event that occurred after a prolonged drought. Microbial responses to changes in precipitation frequency and amount due to climate change will differ among vegetation zones along this Chihuahuan Desert watershed gradient. Soil bacterial communities at the mid-elevation grasslands site are the most vulnerable to changes in precipitation frequency and timing, while fungal community structure is most vulnerable in the low desert scrub site. The differential susceptibility of the microbial communities to changes in precipitation amounts along the elevation gradient reflects the interactive effects of the soil moisture window duration following a precipitation event and differences in soil heat loads. Amounts and types of carbon inputs may not be as important in regulating microbial structure among vegetation zones within in an arid environment as is the seasonal pattern of soil moisture and the soil heat load profile that characterizes the location.  相似文献   

14.
We present data accumulated over the last 25 years on predation of radio-tracked released pheasants. In studies of birds during the autumn/winter at six pheasant shoots with high-density releases managed by full-time gamekeepers, predation of released pheasants by foxes before the shooting season began (July–September) averaged 19.2?±?4.0% per site, and during the shooting season (October 1st–February 1st), a further 15.9?±?1.9% were predated. The range in 3-year average predation rates between sites before shooting began was 8.6 to 42.4%. At seven different sites during the spring and summer, between 20 and 71% of released or wild hens that survived the shooting season were predated, mainly by foxes, between mid-March and mid-July. Predation was significantly higher at sites with low-level predator control (59?±?4.7%) compared to those with high-level control (30?±?5.3%). At three of the four sites with low predator control between 5 and 22% of nest failures were caused by incubating hens being predated by foxes. Our data quantify for the first time highly variable predation rates of released pheasants before and during the winter shooting season which we suggest was influenced by a range of site and management factors. During the spring and summer, our data provide evidence that predation of adult hen pheasants as well as nest predation can suppress breeding success and that predator control can reduce these losses.  相似文献   

15.
This research was conducted in the northern Australian savannah at Boodjamulla National Park where cyanobacterial crusts dominate the soil and rock surfaces in between tussock grasses. It is widely accepted that terrestrial cyanobacteria are drought tolerant and rapidly recommence photosynthesis once moisture is available. Initial tests at the research site indicated that cyanobacteria did not respond to rehydration during the dry season, even after several days. We hypothesised that resurrection had not taken place and new growth from survival cells had to take place during the follow-up wet season. To further understand the desiccation–resurrection processes we tested photosystem II (PSII) responses both during the dry and wet seasons. In the 2009 dry season after 125 days without rain, crust samples were regularly rehydrated. Over the 10 day trial cyanobacteria did not recover PSII activity or CO2-uptake. Although new colonies of Nostoc grew other cyanobacteria remained inactive, even though liverworts and lichens in the same crusts had responded within 24 h. Dry season cyanobacterial crusts were collected in 2010 then reintroduced into their natural environment and exposed to rainfall during the 2011 wet season. Within 24 h PSII in cyanobacteria from a range of crust types had resurrected and CO2-uptake was verified, although different crust types responded at significantly different rates. These are the first studies that have demonstrated that PSII does not respond to rainfall during the dry season and cyanobacterial function appears controlled by other environmental conditions. It is likely that mass extracellular polysaccharide (EPS) production during the wet season, once dry, protects cyanobacteria from premature resurrection in the dry season. We propose that EPS regulates moisture penetration, thus the resurrection of PSII at the onset of the wet season, at which time moisture and humidity alters the rheological properties of EPS permitting rehydration.  相似文献   

16.
Growth response of subalpine fir (Abies lasiocarpa) to climate was studied across its local geographical and elevation range in the Olympic Mountains, Washington. A dendroecological analysis of subalpine fir across a range of elevations (1350-1850 m) and annual precipitation (125-350 cm y?1), was used to compare environmental factors affecting growth. Climate-growth relationships were explored using Pearson product-moment correlation coefficients; partial correlation analysis was used to assess relationships among site chronologies and climatic variables. Radial growth is negatively correlated with winter precipitation at high elevation and wet sites, but not at low and middle elevation dry sites. Growth is positively correlated with current growing season temperature at all sites; however, growth is negatively correlated with previous year August temperature, indicating that climate affects growth in subsequent years. Positive correlations between growth and summer precipitation during the growing season at low and middle elevation dry sites suggest that soil moisture is partially limiting to growth on these sites. If the climate of the Pacific Northwest becomes warmer and drier, then subalpine fir growth may increase at high elevation and wet sites, but may decrease at lower elevation dry sites in the Olympic Mountains. However, the growth response of subalpine fir to potentially rapid climate change will not be uniform because subalpine fir grows over a wide range of topographic features, habitats, and local climates at different geographical scales. A comparison of growth response to current growing season temperature suggests that the temperature-related growth response of subalpine fir is not adequately described by the parabolic curve used in JABOWA-based models.  相似文献   

17.
Significant genotypic variation at both the family and clone-within-family levels was seen for hypocotyl rooting and the rooting of adventitious shoots produced in vitro for Pinus radiata D. Don. High rooting frequencies for hypocotyls were obtained in the absence of exogenous auxin; auxin greatly stimulated the rooting of adventitious shoots. No correlation was seen between the rooting of hypocotyls and shoots; families whose hypocotyls rooted at high frequencies did not necessarily produce shoots that rooted at high frequency. No correlation was seen between adventitious shoot production and subsequent rooting at either the family or clone level. The lack of a negative correlation indicated that selecting families or clones for high levels of shoot production will not automatically select for low rooting ability, obviating a possible bottleneck for commercial propagation of Pinus radiata. Significant family by replication interaction suggests that rooting protocols could be optimized through manipulations of the rooting environment for each family.  相似文献   

18.
Pomacea flagellata is a gastropod conspicuous in freshwater environments, and represents a fishing resource. To assess their abundance, distribution, and secondary production, monthly samplings were carried out in Bacalar Lake from June 2012 to May 2013 at 12 sampling sites. In each site, three random transects were marked parallel to the shore. All snails on transect were collected and shell length and wet weight measured. The highest density occurred in September (1.27 ind.m?2), lowest in October (0.47 ind.m?2). Shell lengths ranged from 2 to 56 mm, with recruitment in January–March. Growth parameters were L 59.50 mm, K 0.65.year?1; the lifetime span was 3 years. Average biomass reached 5.57 wet g.m?2 and secondary production was 6.025 wet g.m?2.year-1; annual renewal rate P/B 1.08. Highest abundance and secondary production was contributed by individuals between 31 and 41 mm in length. A potential biomass of 25.06 tons of snails was estimated in the lake. Snail densities, secondary production, and turnover were very low during the year, indicating that it is not viable to consider a commercial catch without affecting the population. A ban of 10 years is proposed, and aquaculture practices of snails are recommended to recover the resource.  相似文献   

19.
The main objective of this study was to evaluate dissolved organic and inorganic carbon dynamics along upstream and downstream reaches of the Acre River draining the city of Rio Branco, in the state of Acre, Brazil. Dissolved organic carbon (DOC) concentrations in the Acre River were significantly higher during the wet season, ranging from 385 ± 160 to 430 ± 131 ??M among the stations, with no difference in upstream and downstream concentrations. Dissolved inorganic carbon (DIC) showed an inverse pattern, with higher concentrations in the dry season, ranging from 816 ± 215 to 998 ± 754 ??M among the stations, as well as no difference in upstream and downstream DIC concentrations. Bicarbonate was the dominant DIC fraction and was mainly observed during the dry season. Due to lower pH values during the wet season, CO2 partial pressure (pCO2) in the Acre River was higher in the wet season, with values ranging from 4,567 ± 1,813 to 4,893 ± 837 ppm among the stations. Our results indicate that, although the Acre River drains a large city with significant sewage disposal into the river, seasonal hydrological processes are the main driver of dissolved carbon dynamics, even in the downstream study reach directly influenced by urbanization.  相似文献   

20.
Amphibian species capable of optimizing trait response to environmental stressors may develop complex strategies for defending against rapid environmental change. Trait responses may differ between populations, particularly if stressor strength varies across spatial or temporal gradients. Ultraviolet-B (UV-B) radiation is one such stressor that poses a significant threat to amphibian species. We examined the ability of long-toed salamanders (Ambystoma macrodactylum) at high- and low-elevation breeding sites to cooperatively employ behavioral and physiological trait responses to mediate UV-B damage. We performed a microhabitat survey to examine differences in oviposition behavior and UV-B conditions among breeding populations at high- (n = 3; >1,500 m) and low-elevation (n = 3; <100 m) sites. We found significant differences in oviposition behavior across populations, with females at high-elevation sites selecting oviposition substrates in UV-B protected microhabitats. We also collected eggs (n = 633) from each of the breeding sites for analysis of photolyase activity, a photoreactivating enzyme that repairs UV-B damage to the DNA, using a photoproduct immunoassay. Our results revealed no significant differences in photolyase activity between long-toed salamander populations at high and low elevations. For high-elevation salamander populations, relatively low physiological repair capabilities in embryos appear to be buffered by extensive behavioral modifications to reduce UV-B exposure and standardize developmental temperatures. This study provides valuable insight into environmental stress responses via the assessment of multiple traits in allowing sensitive species to persist in rapidly changing landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号