首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

2.
Nitrous oxide (N2O) is one of the three main biogenic greenhouse gases (GHGs) and agriculture represents close to 30 % of the total N2O net emissions. In agricultural soils, N2O is emitted by two main microbial processes, nitrification and denitrification, both of which can convert synthetic nitrogen fertilizer into N2O. Legume-rhizobia symbiosis could be an effective and environmental-friendly alternative to nitrogen fertilization and hence, to mitigate soil N2O emissions. However, legume crops also contribute to N2O emissions. A better understanding of the environmental factors involved in the emission of N2O from nodules would be instrumental for mitigating the release of this GHG gas. In this work, in vivo N2O emissions from nodulated soybean roots in response to nitrate (0, 1, 2 and 4 mM) and flooding have been measured. To investigate the contribution of rhizobial denitrification in N2O emission from nodules, plants were inoculated with B. japonicum USDA110 and napA and nosZ denitrification mutants. The results showed that nitrate was essential for N2O emissions and its concentration enhanced N2O fluxes showing a statistical linear correlation, being the highest N2O fluxes obtained with 4 mM nitrate. When inoculated plants grown with 4 mM nitrate were subjected to flooding, a 150- and 830-fold induction of N2O emission rates from USDA110 and nosZ nodulated roots, respectively, was observed compared to non-flooded plants, especially during long-term flooding. Under these conditions, N2O emissions from detached nodules produced by the napA mutant were significantly lower (p?<?0.05) than those produced by the wild-type strain (382 versus 1120 nmol N2O h?1 g?1 NFW, respectively). In contrast, nodules from plants inoculated with the nosZ mutant accumulated statistically higher levels of N2O compared to wild-type nodules (2522 versus nmol 1120 N2O h?1 g?1 NFW, p?<?0.05). These results demonstrate that flooding is an important environmental factor for N2O emissions from soybean nodules and that B. japonicum denitrification is involved in such emission.  相似文献   

3.

Aims

Poorly drained arctic ecosystems are potential large emitters of methane (CH4) due to their high soil organic carbon content and low oxygen availability. In wetlands, aerenchymatous plants transport CH4 from the soil to the atmosphere, but concurrently transport O2 to the rhizosphere, which may lead to oxidation of CH4. The importance of the latter process is largely unknown for arctic plant species and ecosystems. Here, we aim to quantify the subsurface oxidation of CH4 in a waterlogged arctic ecosystem dominated by Carex aquatilis ssp. stans and Eriophorum angustifolium, and evaluate the overall effect of these plants on the CH4 budget.

Methods

A mesocosms study was established based on the upper 20 cm of an organic soil profile with intact plants retrieved from a peatland in West Greenland (69°N). We measured dissolved concentrations and emissions of 13CO2 and 13CH4 from mesocosms during three weeks after addition of 13C-enriched CH4 below the mesocosm.

Results

Most of the recovered 13C label (>98 %) escaped the ecosystem as CH4, while less than 2 % was oxidized to 13CO2.

Conclusions

It is concluded that aerenchymatous plants control the overall CH4 emissions but, as a transport system for oxygen, are too inefficient to markedly reduce CH4 emissions.
  相似文献   

4.
A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg?1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg?1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg?1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.  相似文献   

5.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

6.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

7.
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and persistence in natural systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than native plant communities in many of the ecosystems it invades, but the source of the additional N is not clear. We exposed introduced Phragmites and native plant assemblages, containing Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300 ppm), N (0 or 25 g m?2 year?1), and hydroperiod (4 levels), and focused our analysis on changes in root productivity as a function of depth and evaluated the effects of introduced Phragmites on soil organic matter mineralization. We report that non-native invasive Phragmites exhibited a deeper rooting profile than native marsh species under all experimental treatments, and also enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2 induced a sharp increase in deep root production in the invasive plant. We propose that niche separation accomplished through deeper rooting profiles circumvents nutrient competition where native species have relatively shallow root depth distributions; deep roots provide access to nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-rooting invasive plants that compete using a tree-like strategy against native herbaceous plants, promoting establishment and invasion through niche separation.  相似文献   

8.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   

9.
Sublethal concentrations of chemical insecticides may cause changes in some behavioral characteristics of natural enemies such as functional responses. The residual effect of three synthetic insecticides including deltamethrin, fenvalerate and azadirachtin were studied on functional response of Habrobracon hebetor Say to Ephestia kuehniella Zeller larvae. Seven host densities (2, 4, 8, 16, 32, 64 and 96) were used during a 24 h period. The resulting data were appropriately fit to Type II functional response models in all treatments: (1) control (0.0916 h?1; and T h  = 0.2011 h); (2) deltamethrin (a = 0.0839 h?1; and T h  = 0.3560 h); (3) fenvalerate (a = 0.0808 h?1 and T h  = 0.3623 h); and (4) azadirachtin (a = 0.0900 h?1 and T h  = 0.2042 h). Maximum theoretical parasitism rate (T/T h ) was 119.34 estimated for control wasps. There was no significant difference between the values of attack rates (a and a + D a ) in all treatments while the handling time was statistically affected in female wasps treated with fenvalerate. Our findings will be useful in safe application of these insecticides in pest management programmes.  相似文献   

10.
The accumulation of atmospheric CO2, primarily due to combustion of fossil fuels, has been implicated in potential global climate change. The high rate of CO2 bioremediation by microalgae has emerged as a favourable method for reducing coal-fired power plant emissions. However, coal-fired power station flue gas contains other chemicals such as SOx which can inhibit microalgal growth. In the current study, the effect of untreated flue gas as a source of inorganic carbon on the growth of Tetraselmis in a 1000 L industrial-scale split-cylinder internal-loop airlift photobioreactor was examined. The culture medium was recycled after each harvest. Tetraselmis suecica grew very well in this airlift photobioreactor during the 7-month experiment using recycled medium from an electroflocculation harvesting unit. Increased medium SO4 2? concentration as high as 870 mg SO4 2??L?1 due to flue gas addition and media recycling had no negative effect on the overall growth and productivity of this alga. The potential organic biomass productivity and carbon sequestration using an industrial-scale airlift PBR at International Power Hazelwood, Gippsland, Victoria, Australia, are 178.9?±?30 mg L?1 day?1 and 89.15?±?20 mg?‘C’?L?1 day?1, respectively. This study clearly indicates the potential of growing Tetraselmis on untreated flue gas and using recycled medium for the purpose of biofuel and CO2 bioremediation.  相似文献   

11.
The reaction mechanisms and rates for the H abstraction reactions between CH3SS and CN radicals in the gas phase were investigated with density functional theory (DFT) methods. The geometries, harmonic vibrational frequencies, and energies of all stationary points were obtained at B3PW91/6-311G(d,p) level of theory. Relationships between the reactants, intermediates, transition states and products were confirmed, with the frequency and the intrinsic reaction coordinate (IRC) analysis at the same theoretical level. High accurate energy information was provided by the G3(MP2) method combined with the standard statistical thermodynamics. Gibbs free energies at 298.15 K for all of the reaction steps were reported, and were used to describe the profile diagrams of the potential energy surface. The rate constants were evaluated with both the classical transition state theory and the canonical variational transition state theory, in which the small-curvature tunneling correction was included. A total number of 9 intermediates (IMs) and 17 transition states (TSs) were obtained. It is shown that IM1 is the most stable intermediate by the largest energy release, and the channel of CH3SS?+?CN?→?IM3?→?TS10?→?P1(CH2SS?+?HCN) is the dominant reaction with the lowest energy barrier of 144.7 kJ mol?1. The fitted Arrhenius expressions of the calculated CVT/SCT rate constants for the rate-determining step of the favorable channel is k =7.73?×?106? T 1.40exp(?14,423.8/T) s?1 in the temperature range of 200–2000 K. The apparent activation energy E a(app.) for the main channel is ?102.5 kJ mol?1, which is comparable with the G3(MP2) energy barrier of ?91.8 kJ mol?1 of TS10 (relative to the reactants).  相似文献   

12.
Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16’s C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L?1 and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 μmol g?1 h?1, respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.  相似文献   

13.

Objectives

To prove the possibility of efficient starch photofermentation in co-culture of heterotrophic and phototrophic bacteria over prolonged period.

Results

Repeated batch photofermentation of starch was demonstrated in co-culture Clostridium butyricum and Rhodobacter sphaeroides under microaerobic conditions. It continued 15 months without addition of new inoculum or pH regulation when using 4–5 g starch l?1 and 0.04 g yeast extract l?1. The complete degradation of starch without volatile fatty acids accumulation was shown in this co-culture. The average H2 yield of 5.2 mol/mol glucose was much higher than that in Clostridium monoculture. The species composition of co-culture was studied by q-PCR assay. The concentration of Clostridium cells in prolonged co-culture was lower than in monoculture and even in a single batch co-culture. This means that Clostridia growth was significantly limited whereas starch hydrolysis still took place.

Conclusion

The prolonged repeated batch photofermentation of starch by co-culture C. butyricum and R. sphaeroides provided efficient H2 production without accumulation of organic acids under conditions of Clostridia limitation.
  相似文献   

14.
Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K+ current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K+ currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 ?/?) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K+ currents in Müller cells from ischemic IP 3 R2 ?/? retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 ?/? mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult.  相似文献   

15.
Crop residues like corn (Zea mays L.) stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn stover removal from a no-till, corn-soybean (Glycine max (L.) Merr) rotation on soil greenhouse gas (GHG; CO2, N2O, CH4) fluxes, crop yields, and soil organic carbon (SOC) dynamics. We conducted a 4-year study using replicated field plots managed with two levels of corn stover removal (none; 55 % stover removal) for four complete crop cycles prior to initiation of ground surface gas flux measurements. Corn and soybean yields were not affected by stover removal with yields averaging 7.28 Mg ha?1 for corn and 2.64 Mg ha?1 for soybean. Corn stover removal treatment did not affect soil GHG fluxes from the corn phase; however, the treatment did significantly increase (107 %, P?=?0.037) N2O fluxes during the soybean phase. The plots were a net source of CH4 (~0.5 kg CH4-C ha?1 year?1 average of all treatments and crops) during the generally wet study duration. Soil organic carbon stocks increased in both treatments during the 4-year study (initiated following 8 years of stover removal), with significantly higher SOC accumulation in the control plots compared to plots with corn stover removal (0–15 cm, P?=?0.048). Non-CO2 greenhouse gas emissions (945 kg CO2-eq ha?1 year?1) were roughly half of SOC (0–30 cm) gains with corn stover removal (1.841 Mg CO2-eq ha?1 year?1) indicating that no-till practices greatly improve the viability of biennial corn stover harvesting under local soil-climatic conditions. Our results also show that repeated corn stover harvesting may increase N loss (as N2O) from fields and thereby contribute to GHG production and loss of potential plant nutrients.  相似文献   

16.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies.  相似文献   

17.
In order to achieve recognition as environmentally friendly production, flue gases should be used as a CO2 source for growing the microalgae Chlorella sorokiniana when used for hydrogen production. Flue gases from a waste incinerator and from a silicomanganese smelter were used. Before testing the flue gases, the algae were grown in a laboratory at 0.04, 1.3, 5.9, and 11.0 % (v/v) pure CO2 gas mixed with fresh air. After 5 days of growth, the dry biomass per liter algal culture reached its maximum at 6.1 % CO2. A second experiment was conducted in the laboratory at 6.2 % CO2 at photon flux densities (PFD) of 100, 230, and 320 μmol photons m?2 s?1. After 4 days of growth, increasing the PFD increased the biomass production by 67 and 108 % at the two highest PFD levels, as compared with the lowest PFD. A bioreactor system containing nine daylight-exposed tubes and nine artificial light-exposed tubes was installed on the roof of the waste incinerator. The effect of undiluted flue gas (10.7 % CO2, 35.8 ppm NO x , and 38.6 ppm SO2), flue gas diluted with fresh air to give 4.2 % CO2 concentration, and 5.0 % pure CO2 gas was studied in daylight (21.4?±?9.6 mol photons m?2 day?1 PAR, day length 12.0 h) and at 135 μmol photons m?2 s?1 artificial light given 24 h day?1 (11.7?±?0.0 mol photons m?2 day?1 PAR). After 4 days’ growth, the biomass production was the same in the two flue gas concentrations and the 5 % pure CO2 gas control. The biomass production was also the same in daylight and artificial light, which meant that, in artificial light, the light use efficiency was about twice that of daylight. The starch concentration of the algae was unaffected by the light level and CO2 concentration in the laboratory experiments (2.5–4.0 % of the dry weight). The flue gas concentration had no effect on starch concentration, while the starch concentration increased from about 1.5 % to about 6.0 % when the light source changed from artificial light to daylight. The flue gas from the silicomanganese smelter was characterized by a high CO2 concentration (about 17 % v/v), low oxygen concentration (about 4 %), about 100 ppm NO x , and 1 ppm SO2. The biomass production using flue gas significantly increased as compared with about 5 % pure CO2 gas, which was similar to the biomass produced at a CO2 concentration of 10–20 % mixed with N2. Thus, the enhanced biomass production seemed to be related to the low oxygen concentration rather than to the very high CO2 concentration.  相似文献   

18.
Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4], whereas the value of k on for NO2 ? reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M?1 s?1 (at pH 7.4). CL facilitates the NO2 ?-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 ?-mediated conversion of CL–CM-cytc-Fe(II) to CL–CM-cytc-Fe(II)-NO (5.6 ± 0.6 M?1 s?1; at pH 7.4) being slightly higher than that for the NO2 ?-mediated conversion of CL–cytc-Fe(II) to CL–cytc-Fe(II)-NO (2.6 ± 0.3 M?1 s?1; at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10?6 M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are ?1.05 ± 0.07 and ?1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH?. These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL–CM-cytc.  相似文献   

19.

Objectives

To enhance activity of cis-epoxysuccinate hydrolase from Klebsiella sp. BK-58 for converting cis-epoxysuccinate to tartrate.

Results

By semi-saturation mutagenesis, all the mutants of the six important conserved residues almost completely lost activity. Then random mutation by error-prone PCR and high throughput screening were further performed to screen higher activity enzyme. We obtained a positive mutant F10D after screening 6000 mutations. Saturation mutagenesis on residues Phe10 showed that most of mutants exhibited higher activity than the wild-type, and the highest mutant was F10Q with activity of 812 U mg?1 (k cat /K m , 9.8 ± 0.1 mM?1 s?1), which was 230 % higher than that of wild-type enzyme 355 U mg?1 (k cat /K m , 5.3 ± 0.1 mM?1 s?1). However, the thermostability of the mutant F10Q slightly decreased.

Conclusions

The catalytic activity of a cis-epoxysuccinate hydrolase was efficient improved by a single mutation F10Q and Phe10 might play an important role in the catalysis.
  相似文献   

20.

Objectives

To find a novel host for the production of 4-vinylphenol (4VPh) by screening Streptomyces species.

Results

The conversion of p-coumaric acid (pHCA) to 4VPh in Streptomyces mobaraense was evaluated using a medium containing pHCA. S. mobaraense readily assimilated pHCA after 24 h of cultivation to produce 4VPh. A phenolic acid decarboxylase, derived from S. mobaraense (SmPAD), was purified following heterologous expression in Escherichia coli. SmPAD was evaluated under various conditions, and the enzyme’s kcat/Km value was 0.54 mM ?1 s?1. Using intergenetic conjugation, a gene from Rhodobacter sphaeroides encoding a tyrosine ammonia lyase, which catalyzes the conversion of l-tyrosine to p-coumaric acid, was introduced into S. mobaraense. The resulting S. mobaraense transformant produced 273 mg 4VPh l?1 from 10 g glucose l?1.

Conclusion

A novel strain suitable for the production of 4VPh and potentially other aromatic compounds was isolated.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号