首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Source–sink theory is an ecological framework that describes how site and habitat-specific demographic rates and patch connectivity can explain population structure and persistence across heterogeneous landscapes. Although commonly used in conservation planning, source–sink theory has rarely been applied to the management of invasive species. This study tested whether the common carp, one of the world’s most invasive species, exhibits source–sink dynamics in a representative watershed in the Upper Mississippi River Basin comprised of a dozen interconnected ponds and lakes. To test for source–sink population structure, we used standard fish sampling techniques, tagging, and genetic assignment methods to describe habitat-specific recruitment rates and dispersal. Five years of sampling revealed that while adult carp were found across the entire watershed, reproductive success (the presence of young carp) was restricted to shallow ponds. Additionally, nearly a third of the carp tagged in a representative pond dispersed into the connected deeper lakes, suggesting that ponds in this system serve as sources and lakes as sinks. This possibility was confirmed by microsatellite analysis of carp tissue samples (n = 1041) which revealed the presence of two distinct strains of carp cohabitating in the lakes, whose natal origins could be traced back to one of two pond systems, with many adult carp attempting to migrate back into these natal ponds to spawn. We conclude that the distribution and persistence of invasive carp in complex interconnected systems may often be driven by source–sink dynamics and that their populations could be controlled by suppressing reproduction in source habitats or by disrupting dispersal pathways, instead of culling individuals from sink habitats.  相似文献   

2.
Although the common carp is globally distributed, it only reaches extreme densities in certain regions. We hypothesized that this phenomenon might be linked to recruitment bottlenecks which carp overcome where environmental conditions create unstable peripheral areas that it can access for spawning and nursery habitat. To test this hypothesis, the abundance, movement and reproductive success of carp was determined in two systems of inter-connected lakes in the North American Midwest whose shallow basins frequently experience winter-hypoxia (‘winterkill’). Radio-tracking demonstrated that while adult carp overwinter in deep lakes that do not winterkill, they aggressively move into winterkill-prone shallow regions in the spring to spawn. The significance of this behavior was demonstrated by ageing analyses which found that carp recruit only in interconnected shallow lakes and then only in years following severe winter hypoxia. Presumably this strategy allows carp to exploit nursery habitat that is relatively free of predators. It likely evolved in response to seasonally variable conditions in the carp’s native habitat in the Ponto-Caspian region. This life history may also explain the carp’s abundance in other unstable regions such as southern Australia and could potentially be exploited to control this damaging invasive.  相似文献   

3.
In many environments recruitment of dispersive propagules (e.g. seeds, spores and larvae) can vary from situations when particular taxa recruit in relative isolation to times when they recruit simultaneously with other, functionally quite different taxa. Differences in the identity and density of recruiting taxa can have important consequences on community structure, but it is still not clear how the effects of individual taxa on communities are modified when they recruit together with other species. Using an experimental approach we compared early development of a temperate marine sessile community after the recruitment of mixtures of botryllid ascidians and barnacles to that when barnacles or botryllid ascidians recruited alone. Communities exposed to recruitment of botryllid ascidians in isolation differed from those that received barnacles, a mixture of botryllids and barnacles or no recruitment in 2-week-old communities. These early differences were driven by higher abundances of the species that were present as initial recruits in experimental treatments. After 2 months communities also differed between barnacle and mixed recruitment treatments but not mixed and botryllid or botryllid and barnacle treatments. These differences were not directly due to differences in the abundances of our manipulated taxa but occurred because of two abundant arborescent bryozoans, Bugula dentata, which occupied more space in communities that initially received mixed recruitment than in those that received barnacle or no recruitment, and Zoobotryon verticillatum, which occupied more space in communities that initially received only barnacle recruitment than those that initially received botryllid or mixed recruitment. These effects did not persist, and communities did not differ after 6 months. These results suggest that, more generally, species may influence community dynamics differently when they recruit alongside other species than when they recruit in relative isolation.  相似文献   

4.
Kettle holes are often abundant within agriculturally used moraine landscapes. They are highly enriched with nutrients and considered hotspots of carbon turnover. However, data on their primary productivity remain rare. We analysed two kettle holes typical to Germany with common aquatic plant communities during one year. We hypothesised that gross primary production (GPP) rates would be high compared to other temperate freshwater ecosystems, leading to high sediment deposition. Summer GPP rates (4.5–5.1 g C m?2 day?1) were higher than those of most temperate freshwater systems, but GPP rates were reduced by 90% in winter. Macrophytes dominated GPP from May to September with emergent macrophytes accounting for half of the GPP. Periphyton contributed to most of the system GPP throughout the rest of the year. Sediment deposition rates were high and correlated with GPP in one kettle hole. In contrast, due to prolonged periods of anoxia, aerobic sediment mineralisation was low while sediment phosphorus release was significant. Our results suggest that kettle holes have a high potential for carbon burial, provided they do not fully dry up during warm years. Due to their unique features, they should not be automatically grouped with ponds and shallow lakes in global carbon budget estimates.  相似文献   

5.
In lakes that experience seasonal ice cover, understanding of nitrogen–oxygen coupling and nitrification has been dominated by observations during open water, ice-free conditions. To address knowledge gaps about nitrogen–oxygen linkages under ice, we examined long-term winter data (30 + years, 2–3 sample events per winter) in 7 temperate lakes of forested northern Wisconsin, USA. Across lakes and depths, there were strong negative relationships between dissolved oxygen (DO) and the number of days since ice-on, reflecting consistent DO consumption rates under ice. In two bog lakes that routinely experience prolonged winter DO concentrations below 1.0 mg L?1, nitrate accumulated near the ice surface mainly in late winter, suggesting nitrification may depend on biogenic oxygen from photosynthesis. In contrast, within five oligotrophic-mesotrophic lakes, nitrate accumulated more consistently over winter and often throughout the water column, especially at intermediate depths. Exogenous inputs of nitrate to these lakes were minimal compared to rates of nitrate accumulation. To produce the nitrate via in-lake nitrification, substantial oxygen consumption by ammonium oxidizing microbes would be required. Among lakes and depths that had significant DO depletion over winter, the stoichiometric nitrifier oxygen demand ranged from 1 to 25% of the DO depletion rate. These estimates of nitrifier-driven DO decline are likely conservative because we did not account for nitrate consumed by algal uptake or denitrification. Our results provide an example of nitrification at temperatures < 5 degrees C having a substantial influence on ecosystem-level nitrogen and oxygen availability in seasonally-frozen, northern forested lakes. Consequently, models of under-ice dissolved oxygen dynamics may be advanced through consideration of nitrification, and more broadly, coupled nitrogen and oxygen cycling.  相似文献   

6.
Although partial migration, a phenomenon in which some individuals in a population conduct seasonal migrations while others remain resident, is common among animals, its importance in facilitating biological invasions has not been demonstrated. To illustrate how partial migration might facilitate invasions in spatially complex habitats, we developed an individual‐based model of common carp Cyprinus carpio in systems of lakes and winterkill‐prone marshes in the Upper Mississippi River Basin (UMRB). Our model predicted that common carp are unable to become invasive in lakes of the UMRB unless they conduct partial migrations into winterkill‐prone marshes in which recruitment rates are high in the absence of native predators that forage on carp eggs and larvae. Despite low dispersal rates of juveniles and higher mortality rates of migrants, partial migration was adaptive across a wide range of migration rates and winterkill frequencies. Partial migration rates as low as 10% and winterkill occurrence as infrequent as once in 20 years were sufficient to cause invasiveness because of carp's reproductive potential and longevity. Consistent with the results of our model, empirical data showed that lake connectivity to winterkill‐prone marshes was an important driver of carp abundance within the study region. Our results demonstrate that biological invasions may be driven by a small, migratory contingent of a population that exploits more beneficial reproductive habitats.  相似文献   

7.
Biological invasions are projected to be the main driver of biodiversity and ecosystem function loss in lakes in the 21st century. However, the extent of these future losses is difficult to quantify because most invasions are recent and confounded by other stressors. In this study, we quantified the outcome of a century‐old invasion, the introduction of common carp to North America, to illustrate potential consequences of introducing non‐native ecosystem engineers to lakes worldwide. We used the decline in aquatic plant richness and cover as an index of ecological impact across three ecoregions: Great Plains, Eastern Temperate Forests and Northern Forests. Using whole‐lake manipulations, we demonstrated that both submersed plant cover and richness declined exponentially as carp biomass increased such that plant cover was reduced to <10% and species richness was halved in lakes in which carp biomass exceeded 190 kg ha?1. Using catch rates amassed from 2000+ lakes, we showed that carp exceeded this biomass level in 70.6% of Great Plains lakes and 23.3% of Eastern Temperate Forests lakes, but 0% of Northern Forests lakes. Using model selection analysis, we showed that carp was a key driver of plant species richness along with Secchi depth, lake area and human development of lake watersheds. Model parameters showed that carp reduced species richness to a similar degree across lakes of various Secchi depths and surface areas. In regions dominated by carp (e.g., Great Plains), carp had a stronger impact on plant richness than human watershed development. Overall, our analysis shows that the introduction of common carp played a key role in driving a severe reduction in plant cover and richness in a majority of Great Plains lakes and a large portion of Eastern Temperate Forests lakes in North America.  相似文献   

8.
In the last 40 years, the shallow steppe lake, Neusiedler See, was ice covered between 0 and 97 days. The North Atlantic Oscillation (NAO) as well as the Mediterranean Oscillation affected the lake and its conditions during winter. Both climate indices correlated negatively with the duration of ice cover and the timing of ice-out. Average winter phytoplankton biomass increased from less than 0.2 (0.05–0.84) mg FM l?1 in the late 1960s/beginning of 1970s to 3.1 (1.72–5.61) mg FM l?1 in the years 2001–2004. The increase in annual winter biomass of phytoplankton was associated with a significant shift in the composition of the algal assemblage. In the winter 1997/1998, diatoms contributed between 40 and 80% to the phytoplankton biomass while in 2006/2007 cyanoprokaryotes contributed 46%. Mean chlorophyll-a concentrations during winter were significantly correlated with those of total phosphorus (Ptot). Together with cold-water species (rotifer Rhinoglena fertöensis), perennial, eurythermal ones (copepod Arctodiaptomus spinosus) contributed to the zooplankton community. High zooplankton numbers were encountered when rotifers, particularly when densities of Rhinoglena fertöensis were high (r 2 = 0.928). Zooplankton abundance and biomass varied from year to year but correlated positively with Chl-a (biomass ? r 2 = 0.69; numbers ? r 2 = 0.536). Winter zooplankton populations were primarily influenced by winter conditions, but in early winter also by survival of autumn populations, i.e., the more adults of Arctodiaptomus spinosus survived into winter, the higher was the zooplankton biomass in early winter. Phyto- and zooplankton dynamics in shallow lakes of the temperate region seem to critically depend on the biomass in autumn and on winter conditions, specifically on ice conditions and thus are related to climate signals such as the NAO.  相似文献   

9.
Although the common carp (Cyprinus carpio), an invasive benthic fish from Eurasia, has long been strongly implicated in the disappearance of vegetative cover and reduced waterfowl abundance in North American shallow lakes, the details of this relationship are obscure. This study documented ecological changes in a recently restored shallow lake (Hennepin and Hopper Lakes, IL, USA) at a time that it was experiencing a large increase in its carp population. We estimated the abundance and biomass of carp 7 years after this lake had been restored and then back-calculated carp population size across time while examining changes in the lake’s plant and waterfowl communities. We found that the biomass of carp remained below ~30 kg/ha for 5 years following restoration, but then increased to ~100 kg/ha in the sixth year following a strong recruitment event. Although a carp biomass of <30 kg/ha had no discernible effects on vegetative cover (which exceeded 90%) or waterfowl (which exceeded 150,000 individuals during fall censuses), the increase to 100 kg/ha was associated with a ~50% decrease in both vegetative cover and waterfowl. A further increase in carp biomass to over 250 kg/ha during the seventh year coincided with a decrease in the vegetative cover to 17% of the lake’s surface and a decline in waterfowl use to ~10% of its original value. These data suggest that the common carp is extremely damaging to the ecological integrity of shallow lakes when its density exceeds ~100 kg/ha. Since the biomass of carp in Midwestern shallow lakes commonly exceeds this value by 3–4 times, it seems likely that carp are responsible for the large-scale habitat deterioration described in many of these ecosystems. Handling editor: J. Cambray  相似文献   

10.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

11.
Tuckett  C. A.  de Bettignies  T.  Fromont  J.  Wernberg  T. 《Coral reefs (Online)》2017,36(3):947-956

Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010–2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

  相似文献   

12.
ABSTRACT White-tailed deer (Odocoileus virginianus) browsing in forest regeneration sites can affect current and future stand structure and species composition. Removal of deer social units (localized management) has been proposed as a strategy to alleviate deer overbrowsing in forest systems. We conducted an experimental localized removal in a high-density deer population in the central Appalachians of West Virginia, USA, during winter 2002. We removed 51 deer within a 1.1-km2 area that encompassed 2 forest regeneration sites (14 ha). During the summer following removal, we detected decreases in distance from the removal area in 8 of 30 (26.7%) adult females having pretreatment mean telemetry locations <2.5 km from the center of the removal area. We measured browsing rates during the summers of 2001–2004 from forest regeneration sites to examine efficacy of localized management. Browsing rates declined annually in both removal and control areas, due in part to increased timber harvesting on the larger study site, suggesting that increasing forage availability may be more effective at reducing impacts on forest regeneration than localized reductions in deer populations. Three years after the initial removal, we removed an additional 31 deer from the original 1.1-km2 removal area. Home range shifts of adjacent deer coupled with the large number of animals collected in the second removal suggests that localized management only produces temporary voids within high-density deer herds. Localized management may not effectively reduce negative impacts of deer in areas of high deer density.  相似文献   

13.
While the structuring role of fish in lakes is well studied for the summer season in North temperate lakes, little is known about their role in winter when fish activity and light irradiance potentially are lower. This is unfortunate as the progressing climate change may have strong effects on lake winter temperature and possibly on trophic dynamics too. We conducted an enclosure experiment with and without the presence of fish throughout winter in two shallow lakes with contrasting phosphorus concentrations. In hypertrophic Lake Søbygård, absence of fish led to higher biomass of zooplankton, higher grazing potential (zooplankton:phytoplankton ratio) and, accordingly, lower biomass of phytoplankton and chlorophyll a (Chl a), while the concentrations of total nitrogen (TN), total phosphorus (TP), oxygen and pH decreased. The average size of egg-bearing Daphnia and Bosmina and the minimum size of egg-bearing specimens of the two genera rose. In the less eutrophic Lake Stigsholm, zooplankton and their grazing potential were also markedly affected by fish. However, the decrease in Chl a was slight, and phytoplankton biovolume, pH and the oxygen concentration were not affected. TN was higher when fish were absent. Our results indicate that: (i) there is a notable effect of fish on zooplankton community structure and size during winter in both eutrophic and hypertrophic North temperate lakes, (ii) Chl a can be high in winter in such lakes, despite low light irradiance, if fish are abundant, and (iii) the cascading effects on phytoplankton and nutrients in winter may be more pronounced in hypertrophic lakes. Climate warming supposedly leading to reduced winter mortality and dominance of small fish may enhance the risk of turbid state conditions in nutrient-enriched shallow lakes, not only during the summer season, but also during winter.  相似文献   

14.
Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year?1 from watersheds globally. Small lakes (<50 km2) were critical in the analysis, retaining almost half (9.3 Tg N year?1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0–100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain ~33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area:lake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale.  相似文献   

15.
1. Contrary to that for lakes and ponds, our knowledge of the influence of planktivorous fish on zooplankton communities in rivers is slight, largely because of the general assumption that such communities are overwhelmingly regulated by physical conditions. 2. In two separate but concurrent in situ enclosure experiments, we investigated the effects of carp gudgeon (Hypseleotris spp.) and Eastern Gambusia (Gambusia holbrooki) on zooplankton communities in slackwaters of a temperate Australian floodplain river. 3. A high biomass of Hypseleotris suppressed the density of daphniid microcrustaceans, but enhanced the total density of rotifers. A high biomass of Gambusia, on the other hand, suppressed the total density of both microcrustaceans and rotifers. 4. A high biomass of planktivorous fish also reduced the density of many of the ovigerous (egg‐carrying) zooplanktonic taxa. Indeed, ovigerous cyclopoid copepods were suppressed in the presence of a high biomass of Hypseleotris, even though there was no significant effect on overall (ovigerous plus non‐ovigerous) density. 5. Our results imply that a high biomass of planktivorous fish can potentially influence zooplankton communities in riverine slackwaters, as in many lakes and ponds.  相似文献   

16.
Instrumentation measuring hyperspectral particle attenuation and absorption was used to assess particle concentration and size, chlorophyll, and spectral characteristics as a function of depth in four temperate lakes of different trophy. Partitioning the absorption coefficient permitted us to analyze properties of phytoplankton absorption as a function of ambient illumination and hydrographic conditions. Stratification was found to be a controlling factor in the size distribution and concentration of particles. Bloom cycles (chlorophyll > 10 mg m?3) were observed to evolve over several weeks but on occasion did change rapidly. Total chlorophyll concentration revealed the majority of the lakes did not follow the typical seasonal succession of biomass associated with temperate waters. Particle and chlorophyll concentration maxima did not always coincide, cautioning the use of chlorophyll a as a surrogate for algal biomass. Phytoplankton near the base of the euphotic zone, including a deep chlorophyll maximum in an oligotrophic system, were found to exhibit significant chromatic adaptation. Unique absorption peaks identified the ubiquitous presence of cyanobacteria in all four lakes. Finally, particle resuspension and possible nepheloid layers were observed in the two smallest lakes.  相似文献   

17.
Symbiotic cyanobacteria??bryophyte associations on the forest floor are shown to contribute significantly to stand-level nitrogen budgets through the process of biological nitrogen fixation (BNF), but few studies have considered the role of canopy bryophytes. Given the high biomass of epiphytic bryophytes in many tree species of the North American temperate rain forest, we suggest that canopy bryophytes may contribute substantially to stand-level N dynamics. We confirm the presence of cyanobacteria and measure rates of BNF at three heights (0, 15 and 30 m) in Sitka spruce trees across three watershed estuaries of Clayoquot Sound, British Columbia, Canada. This study is the first to report BNF by cyanobacteria associated with epiphytic and forest floor bryophytes in the coastal temperate rain forest of North America. Cyanobacteria density was significantly greater in epiphytic bryophytes compared to mosses on the forest floor, and rates of BNF were highest at 30 m in the canopy. The majority of total stand-level BNF (0.76 kg N · ha-1 · yr-1) occurs in the canopy, rather than on the forest floor (0.26 kg N · ha-1 · yr-1). We suggest that BNF by cyanobacterial-bryophyte associations in the canopy of coastal temperate rain forests is a unique source of ecosystem N, which is dependent on large, old trees with high epiphytic bryophyte biomass.  相似文献   

18.
Seasonal patterns in primary productivity and algal biomass in subtropical Florida lakes along increasing gradients of both dissolved organic color and phytoplankton biomass are presented. Chlorophyll a concentrations and gross primary productivity generally reached maxima during the summer and were most depressed in winter months, regardless of color or trophic classification. Primary productivity was more strongly correlated with chlorophyll a, nutrient concentrations and water clarity in clearwater (< 75 Pt units) than in colored (> 75 Pt units) systems. Amplitudes in algal biomass were considerably smaller than temperate lakes. Variability in primary production in Florida lakes was intermediate to patterns in the temperate zone and tropics, but was more closely aligned to northern latitudes. Within the Florida peninsula, variability of primary productivity decreased from north to south and corresponded to latitudinal gradients in climatic regimes.  相似文献   

19.
There has been renewed interest in the combined use of high-rate algal ponds (HRAP) for wastewater treatment and biofuel production. Successful wastewater treatment requires year-round efficient nutrient removal while high microalgal biomass yields are required to make biofuel production cost-effective. This paper investigates the year-round performance of microalgae in a 5-ha demonstration HRAP system treating primary settled wastewater in Christchurch, New Zealand. Microalgal performance was measured in terms of biomass production, nutrient removal efficiency, light absorption and photosynthetic potential on seasonal timescales. Retention time-corrected microalgal biomass (chlorophyll a) varied seasonally, being lowest in autumn and winter (287 and 364 mg m?3day?1, respectively) and highest in summer (703 mg m?3day?1), while the conversion efficiency of light to biomass was greatest in winter (0.39 mg Chl- a per μmol) and lowest in early summer (0.08 mg Chl- a per μmol). The percentage of ammonium (NH4–N) removed was highest in spring (79 %) and summer (77 %) and lowest in autumn (47 %) and winter (53 %), while the efficiency of NH4–N removal per unit biomass was highest in autumn and summer and lowest in winter and spring. Chlorophyll-specific light absorption per unit biomass decreased as total chlorophyll increased, partially due to the package effect, particularly in summer. The proportional increase in the maximum electron transport rate from winter to summer was significantly lower than the proportional increase in the mean light intensity of the water column. We concluded that microalgal growth and nutrient assimilation was constrained in spring and summer and carbon limitation may be the likely cause.  相似文献   

20.
Brook trout (BT) and yellow perch (YP) interact as intraguild predator and prey: while adult BT consume YP, juvenile BT and YP compete for food resources, i.e. zooplankton (mainly a pelagic resource) and zoobenthos (mainly littoral). YP appear to dominate the interaction, reducing BT abundance in lakes with YP present. We removed 90 % of YP from a 35 ha oligotrophic lake to test whether the removal of the dominant competitor would lead to an increase in growth and recruitment of juvenile BT. This manipulation shifted the YP:BT biomass ratio from 11:1 to 1.5:1. The food web response was evaluated using the pre-removal condition as the reference. The abundance of cladoceran zooplankton increased, especially large-bodied Dapnia catawba, and the body size of Daphnia dubia increased significantly, responses indicative of reduced zooplanktivory. Some benthic taxa (chironomid and Ephemeroptera larvae) also increased following YP removal. BT responded rapidly: mean length at age-1 increased from 11.6 cm to 12.8 cm (~35 % weight increase), the condition of 15–25 cm trout improved, and stable isotopes indicated increased consumption of littoral-linked prey by 20 to 30 cm BT. YP, despite their reduced abundance, remained the primary prey of large BT (>?25 cm). The suite of changes observed in response to YP removal support the view that although YP are the primary prey of large BT, they exert a strong competitive effect on juvenile BT. Further study would be required in order to assess whether piscivorous BT can establish persistent top–down control of YP due to enhanced juvenile BT recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号