首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population genetic structure of an invasive species in Spain, the American mink (Mustela vison), was investigated using microsatellite DNA markers. This semi-aquatic carnivore, originating from North America, was imported into Europe for fur farming since the beginning of the 20th century. Due to massive escapes, farm damages, deliberate releases and/or accidents, feral mink populations were established in the aquatic ecosystems of many European countries, including Spain. We genotyped 155 American mink originating from the Spanish regions Basque Country, Catalonia, Castilla-Leon, Aragon, Valencia and Galicia using 10 polymorphic microsatellite loci to highlight population genetic structure, distribution and dispersal. M. vison populations in Spain appear differentiated and not yet connected by gene flow. Bayesian clustering analyses and spatial analyses of molecular variance detected four inferred clusters, overall coinciding with the sampled geographical localities. Preliminary testing shows moderate to large estimated effective population sizes. Molecular analyses result useful to provide baseline data for further research on the evolution of invasive mink populations, as well as support local management strategies and indirectly benefit the conservation of threatened species in Spain, such as the endangered European mink (Mustela lutreola), and the polecat (Mustela putorius), which share the habitat with the American mink. This paper is dedicated to the memory of Xavier Domingo-Roura.  相似文献   

2.
The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations.  相似文献   

3.
In species of great conservation concern, special attention must be paid to their phylogeography, in particular the origin of animals for captive breeding and reintroduction. The endangered European mink lives now in at least three well-separated populations in northeast, southeast and west Europe. Our aim is to assess the genetic structure of these populations to identify 'distinct population segments' (DPS) and advise captive breeding programmes. First, the mtDNA control region was completely sequenced in 176 minks and 10 polecats. The analysis revealed that the western population is characterized by a single mtDNA haplotype that is closely related to those in eastern regions but nevertheless, not found there to date. The northeast European animals are much more variable (pi = 0.012, h = 0.939), with the southeast samples intermediate (pi = 0.0012, h = 0.469). Second, 155 European mink were genotyped using six microsatellites. The latter display the same trends of genetic diversity among regions as mtDNA [gene diversity and allelic richness highest in northeast Europe (H(E) = 0.539, R(S) = 3.76), lowest in west Europe (H(E) = 0.379, R(S) = 2.12)], and provide evidences that the southeast and possibly the west populations have undergone a recent bottleneck. Our results indicate that the western population derives from a few animals which recently colonized this region, possibly after a human introduction. Microsatellite data also reveal that isolation by distance occurs in the western population, causing some inbreeding because related individuals mate. As genetic data indicate that the three populations have not undergone independent evolutionary histories for long (no phylogeographical structure), they should not be considered as distinct DPS. In conclusion, the captive breeding programme should use animals from different parts of the species' present distribution area.  相似文献   

4.
Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.  相似文献   

5.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

6.
Aim Invasive alien species usually exhibit very high adaptation and rapid evolution in a new environment, but they often have low levels of genetic diversity (invasive species paradox). Genetic variation and population genetic structure of feral American mink, Neovison vison, in Poland was investigated to explain the invasion paradox and to assess current gene flow. Furthermore, the influence of mink farming on adaptation of the feral population was evaluated by comparing the genetic structure of feral and ranch mink. Location Samples from feral mink were collected in 11 study areas in northern and central Poland and from ranch mink at 10 farms distributed throughout the country. Methods A 373‐bp‐long mtDNA control region fragment was amplified from 276 feral and 166 ranch mink. Results Overall, 31 haplotypes, belonging to two groups from genetically diverse sources, were detected: 11 only in feral mink, 12 only in ranch mink and eight in both. The genetic differentiation of feral mink from the trapping sites was high, while that among ranch mink from various farms was moderate. There was no significant relationship between genetic and geographic distance. The number of trapping sites where given haplotypes occurred correlated with the number of farms with these haplotypes. The mink from two sites were the most divergent, both from all other feral mink and from ranch mink. Comparison of mtDNA and microsatellite differentiation suggests male‐biased dispersal in this species. Main conclusions American mink in Poland exhibit high genetic diversity and originate from different source populations of their native range. The process of colonization was triggered by numerous escapees from various farms and by immigrants from Belarus. The genetic structure of local feral mink populations was shaped by the founder effect and multiple introductions. The genomic admixture that occurred during mixing of different populations might have increased the fitness of individuals and accelerated the invasiveness of this species.  相似文献   

7.
The extent of dispersal by pelagic larvae in marine environments, including coral reefs, is central for understanding local population dynamics and designing sustainable marine reserves. We present here the first example of a clear stepping-stone genetic structure throughout the Caribbean basin for a common coral reef species, the French grunt (Haemulon flavolineatum). Analysis of microsatellite DNA markers indicated that French grunt population structure may be characterized by overlapping populations throughout the Caribbean, influenced by independent population dynamics but with no fixed geographical boundaries. In addition, different spatial genetic patterns were found in different oceanographic regions. A second species, the bluehead wrasse (Thalassoma bifasciatum), has a much longer pelagic larval duration than French grunts and showed no explicit spatial pattern of genetic variation. This finding is concordant with the hypothesis of a positive relationship between larval dispersal and duration in the plankton. While the magnitude of the genetic signal of population structure in French grunts was very low (F(ST) approximately 0.003), the pattern of isolation-by-distance throughout the Caribbean indicated considerable population structure with important ecological and conservation significance.  相似文献   

8.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

9.
The European eel (Anguilla anguilla L.) has been a prime example of the panmixia paradigm because of its extraordinary adaptation to the North Atlantic gyral system, semelparous spawning in the Sargasso Sea and long trans-oceanic migration. Recently, this view was challenged by the suggestion of a genetic structure characterized by an isolation-by-distance (IBD) pattern. This is only likely if spawning subpopulations are spatially and/or temporally separated, followed by non-random larval dispersal. A limitation of previous genetic work on eels is the lack of replication over time to test for temporal stability of genetic structure. Here, we hypothesize that temporal genetic variation plays a significant role in explaining the spatial structure reported earlier for this species. We tested this by increasing the texture of geographical sampling and by including temporal replicates. Overall genetic differentiation among samples was low, highly significant and comparable with earlier studies (FST = 0.0014; p < 0.01). On the other hand, and in sharp contrast with current understandings, hierarchical analyses revealed no significant inter-location genetic heterogeneity and hence no IBD. Instead, genetic variation among temporal samples within sites clearly exceeded the geographical component. Our results provide support for the panmixia hypothesis and emphasize the importance of temporal replication when assessing population structure of marine fish species.  相似文献   

10.
Aim The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ‘unidirectional dispersal hypothesis’ and is the genetic equivalent of the more generally known ‘drift paradox’. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location The Meuse River (Belgium) and rivers world‐wide. Methods First, we used amplified fragment length polymorphism markers to compare patterns of within‐ and between‐population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta‐analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta‐analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity.  相似文献   

11.
Colson I  Hughes RN 《Molecular ecology》2004,13(8):2223-2233
The dogwhelk Nucella lapillus is a predatory marine gastropod populating North Atlantic rocky shores. As with many other gastropod species, N. lapillus was affected by tributyltin (TBT) pollution during the 1970s and 1980s, when local populations became extinct. After a partial ban on TBT in the United Kingdom in 1987, vacant sites have been recolonized. N. lapillus lacks a planktonic larval stage and is therefore expected to have limited dispersal ability. Relatively fast recolonization of some sites, however, contradicts this assumption. We compared levels of genetic diversity and genetic structuring between recolonized sites and sites that showed continuous population at three localities across the British Isles. No significant genetic effects of extinction/recolonization events were observed in SW Scotland and NE England. In SW England we observed a decrease in genetic diversity and an increase in genetic structure in recolonized populations. This last result could be an artefact, however, due to the superposition of other local factors influencing the genetic structuring of dogwhelk populations. We conclude that recolonization of vacant sites was accomplished by a relatively high number of individuals originating from several source populations (the 'migrant-pool' model of recolonization), implying that movements are more widespread than expected on the basis of development mode alone. Comparison with published data on genetic structure of marine organisms with contrasted larval dispersal supports this hypothesis. Our results also stress the importance of local factors (geographical or ecological) in determining genetic structure of dogwhelk populations.  相似文献   

12.
European eels (Anguilla anguilla) spawn in the remote Sargasso Sea in partial sympatry with American eels (Anguilla rostrata), and juveniles are transported more than 5000 km back to the European and North African coasts. The two species have been regarded as classic textbook examples of panmixia, each comprising a single, randomly mating population. However, several recent studies based on continental samples have found subtle, but significant, genetic differentiation, interpreted as geographical or temporal heterogeneity between samples. Moreover, European and American eels can hybridize, but hybrids have been observed almost exclusively in Iceland, suggesting hybridization in a specific region of the Sargasso Sea and subsequent nonrandom dispersal of larvae. Here, we report the first molecular population genetics study based on analysis of 21 microsatellite loci in larvae of both Atlantic eel species sampled directly in the spawning area, supplemented by analysis of European glass eel samples. Despite a clear East-West gradient in the overlapping distribution of the two species in the Sargasso Sea, we only observed a single putative hybrid, providing evidence against the hypothesis of a wide marine hybrid zone. Analyses of genetic differentiation, isolation by distance, isolation by time and assignment tests provided strong evidence for panmixia in both the Sargasso Sea and across all continental samples of European eel after accounting for the presence of sibs among newly hatched larvae. European eel has declined catastrophically, and our findings call for management of the species as a single unit, necessitating coordinated international conservation efforts.  相似文献   

13.
段兴汉  吴峰  张素青  鲍蕾  王红芳 《生态学报》2023,43(17):7181-7192
东北梅花鹿是东北虎豹国家公园主要的大型食草动物之一,是东北虎豹的主要猎物,对针阔混交林群落的维持有关键的作用,探究其遗传多样性及空间遗传格局对东北梅花鹿的保护以及国家公园生态系统的健康至关重要。在国家公园珲春保护区内,通过非损伤方法获得遗传样本,利用微卫星标记,研究该梅花鹿种群的空间遗传格局及其影响因素。结果表明:本研究区梅花鹿种群平均期望杂合度为0.721,遗传多样性较为丰富。有限的扩散能力常常导致种群在遗传距离上具有显著的空间自相关模式,本研究区梅花鹿种群在0-1km距离等级内在遗传距离上具有显著的空间自相关现象,据此可推测,该地区梅花鹿扩散距离为1km左右。STRUCTURE分析表明,珲春地区梅花鹿种群不存在明显的遗传分化。各种空间变量可以显著影响物种的遗传分化。本研究选取海拔、坡度、坡向、地表起伏率、人类干扰5个变量,研究其对梅花鹿种群遗传结构的影响,这5个变量多被认为与大中型哺乳动物扩散阻碍相关。依据5个变量建立了336个阻力模型,并进行偏曼特尔检验。其中,依据海拔、坡向、地表起伏率、人类干扰假设建立的246个阻力模型与遗传距离之间的关系并不显著,综合所有变量的15个生境适宜性模型阻力模型与遗传距离的关系也都不显著。在依据坡度假设建构的75个阻力模型中,只有1个模型与遗传距离有显著的正相关关系,该模型同时也是在控制空间自相关影响后,在所有模型中与遗传距离相关性最高的模型。根据该模型推测,最适宜梅花鹿扩散的坡度为10°,梅花鹿可能倾向于利用缓坡进行扩散。结果对东北虎豹国家公园梅花鹿种群的保护具有重要意义。  相似文献   

14.
In order to describe the influence of Pleistocene glaciations on the genetic structure and demography of a highly mobile, but specialized, passerine, the Savi's Warbler (Locustella luscinioides), mitochondrial DNA sequences (ND2) and microsatellites were analysed in c.330 individuals of 17 breeding and two wintering populations. Phylogenetic, population genetics and coalescent methods were used to describe the genetic structure, determine the timing of the major splits and model the demography of populations. Savi's Warblers split from its sister species c.8 million years ago and have two major haplotype groups that diverged in the early/middle Pleistocene. One of these clades originated in the Balkans and is currently widespread, showing strong evidence for population expansion; whereas the other is restricted to Iberia and remained stable. Microsatellites agreed with a genetic break around the Pyrenees, but showed considerable introgression and a weaker genetic structure. Both genetic markers showed an isolation-by-distance pattern associated with the population expansion of the eastern clade. Breeding populations seem to be segregated at the wintering sites, but results on migratory connectivity are preliminary. Savi's Warbler is the only known migratory bird species in which Iberian birds did not expand beyond the Pyrenees after the last glaciation. Despite the long period of independent evolution of western and eastern populations, complete introgression occurred when these groups met in Iberia. Mitochondrial sequences indicated the existence of refugia-within-refugia in the Iberian Peninsula during the last glacial period, which is surprising given the high dispersal capacity of this species. Plumage differences of eastern subspecies seemed to have evolved recently through natural selection, in agreement with the glacial expansion hypothesis. This study supports the great importance of the Iberian Peninsula and its role for the conservation of genetic variation.  相似文献   

15.
The greater flamingo Phoenicopterus roseus is a long‐lived colonial waterbird species, characterized by a large range encompassing three continents, a very limited number of breeding sites, and high dispersal abilities. We investigated both the phylogeographic history and the contemporary extent of genetic differentiation between eight different Mediterranean breeding colonies of greater flamingos sampled between 1995 and 2009, using both mitochondrial DNA and microsatellite markers. We found no significant differences in allelic richness or private allelic richness in relation to colony size. Overall, no genetic population differentiation was detected using either mitochondrial or microsatellite markers. F‐statistics and Bayesian clustering methods did not support any significant genetic structure. Analysis of both mitochondrial DNA and microsatellites indicated that populations have undergone a bottleneck followed by rapid growth and expansion. The average time since expansion was estimated to be 696 421 yr (90% CI: 526 316–1 131 579 yr). We discuss our results in relation to both the possible historical events accounting for the present genetic structure and relevance to conservation and management of the species.  相似文献   

16.
The shrub Rosa rugosa (Japanese Rose), native to East Asia, is considered one of the most troublesome invasive plant species in natural or semi-natural habitats of northern Europe and has proven very difficult to control. We aimed at disentangling the species’ invasion history in Europe, including determining the number of introductions and their geographic origin, and at investigating whether populations in the introduced and native ranges differ in genetic diversity, structure and degree of differentiation. We found that introduced (n = 16) and native (n = 16) populations had similar levels of genetic diversity at seven nuclear SSR (microsatellite) loci. European populations lack isolation by distance and are less genetically differentiated than are populations in East Asia. Multiple and at least three independent colonization events, one of which was particularly successful, gave rise to current R. rugosa populations in Europe. The geographic distribution patterns of these three genetic clusters could not be explained by natural dispersal alone, indicating that human mediated secondary dispersal is driving the expansion in Europe. One cluster representing three of the European populations was most likely derived from NW Japan, whereas the origin of the remaining thirteen populations could not clearly be resolved. The introduction and expansion in Europe occurred with no significant loss of genetic diversity. We conclude that high propagule pressure at the primary establishment phase is the most parsimonious explanation for this pattern. A potential for long distance seed dispersal, coastal habitat connectivity and an outcrossing breeding system are factors likely to have enabled populations of R. rugosa to avoid detrimental effects of genetic bottlenecks and will further increase the species’ range size and abundance in Europe. We recommend that human-mediated dispersal should be prevented in order to halt the continued expansion.  相似文献   

17.
An integral part to understanding the biology of an invasive species is determining its origin, particularly in pest species. As one of the oldest known invasive species, the goals of this study were to evaluate the evidence of a westward expansion of Hessian fly into North America, from a potential singular introduction event, and the population genetic structure of current populations. Levels of genetic diversity and population structure in the Hessian fly were compared across North America, Europe, North Africa, Western Asia, and New Zealand. Furthermore, Old World populations were evaluated as possible sources of introduction. We tested diversity and population structure by examining 18 microsatellite loci with coverage across all four Hessian fly chromosomes. Neither genetic diversity nor population genetic structure provided evidence of a westward movement from a single introduction in North America. Introduced populations in North America did not show identity or assignment to any Old World population, likely indicating a multiple introduction scenario with subsequent gene flow between populations. Diversity and selection were assessed on a chromosomal level, with no differences in diversity or selection between chromosomes or between native and introduced populations.  相似文献   

18.
Identifying the factors responsible for the structuring of genetic diversity is of fundamental importance for biodiversity conservation. However, arriving at such understanding is difficult owing to the many factors involved and the potential interactions between them. Here, we present an example of how such interactions can preclude us from arriving at a complete characterization of the demographic history and genetic structure of a species. Ctenomys rionegrensis is a species with restricted dispersal abilities and, as such, should exhibit an isolation by distance (IBD) pattern, which previous studies were unable to uncover. It was therefore concluded that this species underwent a recent population expansion. Using a novel hierarchical Bayesian method, we show that the inability to detect the IBD pattern is due to the interaction between elevation and geographical distance. We posit that populations in low areas suffer periodic floods that may reduce local population sizes, increasing genetic drift, a process that masks the effect of distance on genetic differentiation. Our results do not refute the possibility that the populations of C. rionegrensis underwent a recent population expansion but they indicate that an alternative scenario described by a metapopulation model at or near migration-drift equilibrium cannot be excluded either.  相似文献   

19.
Like many carnivore species, European wildcats (Felis silvestris) have suffered severe anthropogenic population declines in the past, resulting in a strong population bottleneck at the beginning of the 20th century. In Germany, the species has managed to survive its near extinction in small isolated areas and is currently recolonizing former habitats owing to legal protection and concerted conservation efforts. Here, we SNP‐genotyped and mtDNA‐sequenced 56 historical and 650 contemporary samples to assess the impact of massive persecution on genetic diversity, population structure, and hybridization dynamics of wildcats. Spatiotemporal analyses suggest that the presumed postglacial differentiation between two genetically distinct metapopulations in Germany is in fact the result of the anthropogenic bottleneck followed by re‐expansion from few secluded refugia. We found that, despite the bottleneck, populations experienced no severe genetic erosion, nor suffered from elevated inbreeding or showed signs of increased hybridization with domestic cats. Our findings have significant implications for current wildcat conservation strategies, as the data analyses show that the two presently recognized wildcat population clusters should be treated as a single conservation unit. Although current populations appear under no imminent threat from genetic factors, fostering connectivity through the implementation of forest corridors will facilitate the preservation of genetic diversity and promote long‐term viability. The present study documents how museum collections can be used as essential resource for assessing long‐term anthropogenic effects on natural populations, for example, regarding population structure and the delineation of appropriate conservation units, potentially informing todays'' species conservation.  相似文献   

20.
To be effective, management programmes geared towards halting or reversing the spread of invasive species must focus on defined and defensible areas. This requires knowledge of the dispersal of non-native species targeted for control to better understand invasion and recolonisation scenarios. We investigated the genetic structure of invasive American mink ( Neovison vison ) in Scotland, and incorporated landscape genetic approaches to examine resultant patterns in relation to geographical features that may influence dispersal. Populations of mink sampled from 10 sites in two regions (Argyll and Northeast Scotland) show a distinct genetic structure. First, the majority of pairwise population comparisons yielded F ST values that were significantly greater than zero. Second, amova revealed that most of the genetic variance was attributable to differences among regions. Assignment tests placed 89 or more of individuals into their sampled region. Bayesian clustering methods grouped samples into two clusters according to their region of origin. Wombling approach identified the Cairngorms Mountains as a major impediment to gene flow between the regions. Mantel pairwise correlations between genetic and geographical distances estimated as least-cost distance assuming a linear increase in the cost of movement with increasing elevation were higher than Euclidean distances or distance along waterways. Spatial autocorrelation analyses revealed stronger spatial structuring for females than for males. These results suggest that gene flow by American mink is restricted by landscape features (mountain ranges) and that eradication attempt should in the first instance break down the connectivity between management units separated by mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号