首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Palaearctic steppe biome: a new synthesis   总被引:2,自引:0,他引:2  
The Palaearctic steppes range from the Mediterranean basin towards China, forming one of the largest continuous terrestrial biomes. The literature on steppe ecology and conservation is vast but scattered and often not available in English. We provide a review of some key topics based on a new definition of steppes, which includes also Mediterranean steppes and alpine rangelands of the Asian Highlands. Revisiting the terrestrial ecoregions of the world, we estimate that the Palaearctic steppe biome extends over ca. 10.5 million km2. Major chorological regions differ in their macroclimatic niche with a clear distinction between Middle Asia with its winter precipitation and the Central Asian summer-rain regions of the Mongolian plateau and of Tibet. Steppe soils store large amounts of carbon, yet the sequestration potential is debated and depends on land use. Major physiognomic-ecological steppe types include forest-, typical-, desert-, and alpine-steppe, which vary in the importance of grasses, mainly C3 species. The steppes host a specialised fauna, and Middle Asia, Tibet, and especially Mongolia, have large herds of migrating ungulates. The share of pristine and protected sites is low in the steppe regions, with conversion into croplands being the most important land use impact in Europe, Middle Asia, and the Mediterranean, while grazing has a severe impact in some parts of Mongolia and Tibet. There are major gaps in our knowledge on: (1) the effects of climate change on the crucial seasonal patterns; (2) the role of steppe soils in the global carbon budget; and (3) the ecology and distribution of most animal groups except vertebrates.  相似文献   

2.
3.
Biodiversity: past, present, and future   总被引:2,自引:0,他引:2  
Data from the fossil record are used to illustrate biodiversity in the past and estimate modern biodiversity and loss. This data is used to compare current rates of extinction with past extinction events. Paleontologists are encouraged to use this data to understand the course and consequences of current losses and to share this knowledge with researchers interested in conservation and ecology.  相似文献   

4.
The Kingdom of Nepal extends 800 km east to west along the southern slopes of the Himalayas. Because of its biogeographical position, Nepal contains biological elements of both the Indo-Malayan and Palaearctic realms. Beside the trees in forest ecosystems, a large number of tree species are maintained on farms as part of subsistence farming systems. The role of these trees in ensuring the sustainability of agricultural production and the importance of traditional farming systems for the conservation of crop diversity have been well documented. However, the status of farm trees and their role in biodiversity conservation are poorly documented. This paper presents a case study of two villages in the western middle hills of Nepal. It highlights the role of traditional agroforestry practices for the conservation of tree diversity and argues that farms can be considered biodiversity reservoirs. Farm trees help to reduce pressure on community and government forests and create a favorable environment for many plant and animal species. Farm trees also provide social functions in that households with many farm trees no longer exercise their communal rights to extract grass products from community forests, which in turn benefits poor and disadvantaged households. The paper discusses possibilities to improve the role of farm trees in biodiversity conservation. It argues for the development of mechanisms such as tax exemptions and conservation credits that provide benefits to rural communities as compensation for their local and global environmental services including biodiversity conservation.  相似文献   

5.
ABSTRACT The islands of the Caribbean contain habitat of critical importance to a large number of endemic and resident birds, as well as many overwintering Neotropical migrants, and they rank as a globally outstanding conservation priority ecoregion and biodiversity hotspot. Considerable research from the region has focused on the ecology of permanent resident species, and these studies have had particular significance for threatened species management, especially parrot biology and conservation, but also for tropical community ecology in general. Work by ornithologists in the Caribbean has been instrumental in improving our understanding of the ecology of overwintering Neotropical migrants and in developing long‐term monitoring programs. Although Caribbean‐based studies of birds have resulted in significant contributions in many important areas of ecological research, there is a great need for additional research. Especially needed are studies with application to the management of resident species, and studies of how bird populations may be affected by pathogens, parasites, plants, and other types of biotic interactions. Studies focusing on how bird species and populations are affected by global climate change, and cumulative, landscape‐level changes in land use are also needed. Along with additional research, scientists have an important role to play in building capacity to prepare the next generation of biologists in the region who will need to address mounting challenges related to biodiversity protection. As with many conservation efforts, funding is a critical need for almost all organizations and agencies involved in research, conservation action, and capacity building in the West Indies.  相似文献   

6.
Climate change has direct and indirect impacts on forest ecosystems worldwide. In this context, changing site conditions and altered disturbance regimes as well as forest management responses are challenging the conservation of biodiversity in forests. Climate-induced dynamics and uncertainties related to future forest ecosystem development are calling into question current conservation strategies and concepts. Given the longevity of trees, slow development rates of forest ecosystems and slow migration rates of many forest species, the planning of adaptation measures in response to climate change are especially difficult though highly important for forest biodiversity conservation. This paper introduces a special issue with eight contributions which deal with a variety of aspects of forest biodiversity conservation in the face of climate change. More specifically, the papers address direct impacts of climate change on forest biodiversity, adaptation measures for forest and conservation management, as well as resulting challenges for conservation strategies and concepts. In conclusion, adaptation measures that enhance diversity and provide different options for future action, thereby maintaining ecosystems’ resilience, as well as conservation management operating on a landscape level, are promoted as being beneficial for coping with uncertainties related to climate change. Adaptive management, which constantly reviews conservation goals and measures, and which takes into account both science-based and local ecological knowledge on climate change can be a valuable tool to inform decisions for forest biodiversity conservation.  相似文献   

7.
The genus Maculinea is confined to the Palaearctic region. Four species occur from Central Europe to China and/or Japan, while M. rebeli is probably restricted to Europe. Although within many Western European countries the distribution of the species is well known, there are still many questions. The exact status of some of the species is still unclear and the amount of decline in this century is unknown. In Asia, especially within the nations of the former USSR, the distributions of species are even less well known and as a basis for good research and effective nature conservation, knowledge on these subjects is needed. © Rapid Science Ltd. 1998  相似文献   

8.
To conserve biodiversity, complementary approaches are necessary. Besides using museum data from sightings and specimens, the knowledge of experts can also be employed. Often such valuable information is lost on retirement or death. To investigate the value of this knowledge for nature conservation planning, we sent questionnaires to 124 professional conservationists in the province of KwaZulu-Natal, South Africa. Fifty-two replies illustrated that the historical context biases our concepts of nature and the conservation of biodiversity. Despite an awareness of all the spatial scales, complexities and dynamics of nature, there is still a strong focus on large-sized animals and visibly discrete ecosystems, such as wetlands. Nevertheless, the respondents illustrated that an awareness of infrequently-seen and less well known organisms is increasing. Harnessing this expert knowledge was valuable for conservation planning, but had the weakness that many taxa and localities were neglected. Similar problems arose with data from museum specimens. However, both these approaches were synergistic and highlighted the geographical areas that need far more exploration of their biodiversity. Such information gathering is an important ethical and practical exercise for conserving biodiversity.  相似文献   

9.
The protection of key areas for biodiversity at sea is not as widespread as on land and research investment is necessary to identify biodiversity hotspots in the open ocean. Spatially explicit conservation measures such as the creation of representative networks of marine protected areas (MPAs) is a critical step towards the conservation and management of marine ecosystems, as well as to improve public awareness. Conservation efforts in ecologically rich and threatened ecosystems are specially needed. This is particularly urgent for the Mediterranean marine biodiversity, which includes highly mobile marine vertebrates. Here, we studied the at sea distribution of one of the most endangered Mediterranean seabird, the critically endangered Balearic shearwater Puffinus mauretanicus. Present knowledge, from vessel-based surveys, suggests that this species has a coastal distribution over the productive Iberian shelf in relation to the distribution of their main prey, small pelagic fish. We used miniaturised satellite transmitters to determine the key marine areas of the southern population of Balearic shearwaters breeding on Eivissa and spot the spatial connections between breeding and key marine areas. Our tracking study indicates that Balearic shearwaters do not only forage along the Iberian continental shelf but also in more distant marine areas along the North African coast, in particular W of Algeria, but also NE coast of Morocco. Birds recurrently visit these shelf areas at the end of the breeding season. Species distribution modelling identified chlorophyll a as the most important environmental variable in defining those oceanographic features characterizing their key habitats in the western Mediterranean. We identified persistent oceanographic features across time series available in the study area and discuss our results within the current conservation scenario in relation to the ecology of the species.  相似文献   

10.
Limnology - Insufficient knowledge about ecology of weed macrophytes from a large-scale perspective narrows the necessary decision-making for biodiversity conservation. The present study aimed to...  相似文献   

11.
To truly understand the current status of tropical diversity and to forecast future trends, we need to increase emphasis on the study of biodiversity in rural landscapes that are actively managed or modified by people. We present an integrated landscape approach to promote research in human-modified landscapes that includes the effects of landscape structure and dynamics on conservation of biodiversity, provision of ecosystem services, and sustainability of rural livelihoods. We propose research priorities encompassing three major areas: biodiversity, human–environment interactions, and restoration ecology. We highlight key areas where we lack knowledge and where additional understanding is most urgent for promoting conservation and sustaining rural livelihoods. Finally, we recommend participatory and multidisciplinary approaches in research and management. Lasting conservation efforts demand new alliances among conservation biologists, agroecologists, agronomists, farmers, indigenous peoples, rural social movements, foresters, social scientists, and land managers to collaborate in research, co-design conservation programs and policies, and manage human-modified landscapes in ways that enhance biodiversity conservation and promote sustainable livelihoods.  相似文献   

12.
Although habitat destruction and the introduction of exotic species are causing the extinction of many native species, the number of extinct species that are then rediscovered is surprising. However, before searching for meaning of rediscoveries, we should distinguish between a false and a true rediscovery to avoid the interpretation of changes in biodiversity knowledge as changes in the efforts to conserve biodiversity. Here, we proposed the hypothesis of the biodiversity knowledge gap and a conceptual scheme to test this hypothesis, discussing how to deal with the rediscovery of a putatively extinct species. In this paper, we dealt with the local rediscovery of the plant Neptunia pubescens Benth. (Fabaceae), hypothesizing that if its local rediscovery is a case of the biodiversity knowledge gap (false rediscovery), its conservation status will change. Furthermore, we provided taxonomic data, geographic coordinates and figures as support for its local rediscovery, as well as some considerations about the implications for the conservation of N. pubescens.  相似文献   

13.
Biodiversity, productivity and stability in real food webs   总被引:3,自引:0,他引:3  
The global biodiversity crisis has motivated new theory and experiments that explore relationships between biodiversity (species richness and composition in particular), productivity and stability. Here we emphasize that these relationships are often bi-directional, such that changes in biodiversity can be both a cause and a consequence of changes in productivity and stability. We hypothesize that this bi-directionality creates feedback loops, as well as indirect effects, that influence the complex responses of communities to biodiversity losses. Important, but often neglected, mediators of this complexity are trophic interactions. Recent work shows that consumers can modify, dampen or even reverse the directionality of biodiversity-productivity-stability linkages inferred from the plant level alone. Such consumer mediation is likely to be common in many ecosystems. We suggest that merging biodiversity research and food-web theory is an exciting and pressing frontier for ecology, with implications for biodiversity conservation.  相似文献   

14.
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. "Backyard biodiversity", defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of "backyard biodiversity" specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability.  相似文献   

15.
Spatial scaling of microbial biodiversity   总被引:1,自引:0,他引:1  
A central goal in ecology is to understand the spatial scaling of biodiversity. Patterns in the spatial distribution of organisms provide important clues about the underlying mechanisms that structure ecological communities and are central to setting conservation priorities. Although microorganisms comprise much of Earth's biodiversity, little is known about their biodiversity scaling relationships relative to that for plants and animals. Here, we discuss current knowledge of microbial diversity at local and global scales. We focus on three spatial patterns: the distance-decay relationship (how community composition changes with geographic distance), the taxa-area relationship, and the local:global taxa richness ratio. Recent empirical analyses of these patterns for microorganisms suggest that there are biodiversity scaling rules common to all forms of life.  相似文献   

16.
Removal of feral cats from island environments is a useful mechanism by which their ecological impact on endangered species can be reduced or ended. Nevertheless, because cats are anthropogenic in their origins, social perceptions of management practices play a large role in their implementation. Four-hundred questionnaires were delivered (386 were returned) with 100 going to each of the following: local residents; environmental workers; tourists; and, hunters. Questions explored respondents’ knowledge about island biodiversity and invasive species as well as attitudes towards cat population management methods. Habitat destruction and introduction of invasive species were considered the main threats for the conservation of island biodiversity. Most respondents considered cats to have a negative impact on biodiversity and sterilization campaigns were considered most appropriate for cat population control. Several free sterilization campaigns have been conducted in La Palma Island Biosphere Reserve in order to reduce free-ranging cats and were well received by local people. This research, which combined concepts of management, ecology and social sciences, provides valuable insights which may to be applicable on several other islands where cats and people are present and in conflict with conservation priorities.  相似文献   

17.
The tropical forests of the Congo Basin and Gulf of Guinea harbor some of the greatest terrestrial and aquatic biological diversity in the world. However, our knowledge of the rich biological diversity of this region and the evolutionary processes that have shaped it remains limited, as is our understanding of the capacity for species to adapt or otherwise respond to current and projected environmental change. In this regard, research efforts are needed to increase current scientific knowledge of this region's biodiversity, identify the drivers of past diversification, evaluate the potential for species to adapt to environmental change and identify key populations for future conservation. Moreover, when evolutionary research is combined with ongoing environmental monitoring efforts, it can also provide an important set of tools for assessing and mitigating the impacts of development activities. Building on a set of recommendations developed at an international workshop held in Gabon in 2011, we highlight major areas for future evolutionary research that could be directly tied to conservation priorities for the region. These research priorities are centered around five disciplinary themes: (1) documenting and discovering biodiversity; (2) identifying drivers of evolutionary diversification; (3) monitoring environmental change; (4) understanding community and ecosystem level processes; (5) investigating the ecology and epidemiology of disease from an evolutionary perspective (evolutionary epidemiology). Furthermore, we also provide an overview of the needs and priorities for biodiversity education and training in Central Africa.  相似文献   

18.

Aims

Eurasian forest‐steppes are among the most complex non‐tropical terrestrial ecosystems. Despite their considerable scientific, ecological and economic importance, knowledge of forest‐steppes is limited, particularly at the continental scale. Here we provide an overview of Eurasian forest‐steppes across the entire zone: (a) we propose an up‐to‐date definition of forest‐steppes, (b) give a short physiogeographic outline, (c) delineate and briefly characterize the main forest‐steppe regions, (d) explore forest‐steppe biodiversity and conservation status, and (e) outline forest‐steppe prospects under predicted climate change.

Location

Eurasia (29°–56°N, 16°–139°E).

Results and Conclusions

Forest‐steppes are natural or near‐natural vegetation complexes of arboreal and herbaceous components (typically distributed in a mosaic pattern) in the temperate zone, where the co‐existence of forest and grassland is enabled primarily by the semi‐humid to semi‐arid climate, complemented by complex interactions of biotic and abiotic factors operating at multiple scales. This new definition includes lowland forest–grassland macromosaics (e.g. in Eastern Europe), exposure‐related mountain forest‐steppes (e.g. in Inner Asia), fine‐scale forest–grassland mosaics (e.g. in the Carpathian Basin) and open woodlands (e.g. in the Middle East). Using criteria of flora, physiognomy, relief and climate, nine main forest‐steppe regions are identified and characterized. Forest‐steppes are not simple two‐phase systems, as they show a high level of habitat diversity, with forest and grassland patches of varying types and sizes, connected by a network of differently oriented edges. Species diversity and functional diversity may also be exceptionally high in forest‐steppes. Regarding conservation, we conclude that major knowledge gaps exist in determining priorities at the continental, regional, national and local levels, and in identifying clear target states and optimal management strategies. When combined with other threats, climate change may be particularly dangerous to forest‐steppe survival, possibly resulting in compositional changes, rearrangement of the landscape mosaic or even the latitudinal or altitudinal shift of forest‐steppes.  相似文献   

19.
A professional approach to conservation of biodiversity requires good knowledge, but we do not even know anywhere near how many species do occur on earth. We even know less on the conservation status of the living world. Factors threatening biodiversity are many and diverse. In addition to key problems such as human population growth, or ever increasing and unsustainable use of resources, effective biodiversity conservation is also hampered by massive lack of knowledge, a growing gap of trained taxonomists and ecologists, bureaucracy, politics and serious misinterpretation of important issues affecting biodiversity. In order to reduce the knowledge gap, the need to catalogue and conserve the diversity of live on earth must be seen as an important global challenge and must be funded with appropriate resources accordingly.  相似文献   

20.
Threatened by devil facial tumour disease, the Tasmanian devil (Sarcophilus harrisii), a carnivorous marsupial confined to Tasmania, Australia, is the subject of conservation management under the Save the Tasmanian Devil Program. Conservation actions such as captive breeding and translocation may impact upon parasite ecology, presenting risk of increased disease through stress and impaired immunity, and by exposing hosts to parasites to which they are immunologically naïve. Given the importance of parasites to ecosystem function, it has been argued from a biodiversity perspective that parasites should be conserved in their own right. In this review we describe current knowledge, and limitations in our knowledge, of Tasmanian devil parasites. We then discuss the potential for changes in host–parasite interactions as a result of host-population decline and conservation management, both generally and with examples from the Tasmanian devil. The review closes with a recommendation for a systematic evaluation of parasites in captive and wild devils to aid conservation of this host–parasite system in its entirety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号