首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ciliate Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins. It has been proven, using Tb3+ as a fluorescence probe, that EoCen has four calcium-binding sites. The sensitized emission arises from nonradiative energy transfer between the three tyrosine residues (Tyr46, Tyr72, and Tyr79) of the N-terminal half and the bound Tb3+ ions. To determine the most critical of the three tyrosine residues for the process of fluorescence resonance energy transfer, six mutants of the N-terminal domain of EoCen, which contain one (N-Tyr46/N-Tyr72/N-Tyr79) or two (N-Y46F/N-Y72F/N-Y79F) tyrosine residues, were obtained by site-directed mutagenesis. The aromatic residue-sensitized Tb3+ fluorescence of N-Y79F was most affected, displaying a 50% reduction compared with wild-type N-EoCen. Among the tyrosines, Tyr79 is the shortest mean distance from the protein-bound Tb3+ (at sites I/II), as calculated via the Förster mechanism. The steady-state and time-resolved fluorescence parameters of the wild-type N-EoCen and the three double mutants suggest that Tyr79, which exists in a hydrophobic environment, has the highest quantum yield and a relatively long average lifetime. The decay of Tyr79 is the least heterogeneous among the three tyrosine residues. In addition, molecular modeling shows that a critical hydrogen bond is formed between the 4-hydroxyl group of Tyr79 and the oxygen from the side chains of the residue Asn39. Kinetic experiments on tyrosine and Tb3+ fluorescence demonstrate that tyrosine fluorescence quenching is largely due to the self-assembly of EoCen, and that the quenching degrees of the mutants differ. Resonance light scattering and crosslinking analysis carried out on the full-length single mutants (Y46F, Y72F, and Y79F) showed that Tyr79 also plays the most important role in the Tb3+-dependent self-assembly of EoCen among the three tyrosines.  相似文献   

2.
Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1–6 % activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4–1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal center in the active site for other metalloenzymes.  相似文献   

3.
Ciliate Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins, which often associated with the centrosomes and basal bodies. To explore the possible structural role of EoCen, we initiated a physicochemical study of the self-assembly properties of the purified protein in vitro. The native PAGE results indicate that only the integral protein shows multimers in the presence of Lu(3+). The dependence of Lu(3+) induced self-assembly of EoCen on various chemical and physical factors, including temperature, protein concentration, ionic strength and pH, was characterized using resonance light scattering (RLS). Control experiments with different metal ions suggest that Ca(2+) and Lu(3+) bindings to the N-terminal domain of EoCen are all positive to the self-assembly of the protein, and Lu(3+) exhibits the stronger effect, however, Mg(2+) alone cannot take the same effect. The experiments of 2-ptoluidinylnaphthalene-6-sulfonate (TNS) binding and ionic strength demonstrate that the lutetium(III)-dependent self-assembly is closely related to the exposure of hydrophobic cavity. Control experiment on pH value with EoCen and the fragments of it, N-terminal domain of EoCen (N-EoCen), indicates that the electrostatic effect is of small tendency to be served as the main driving force in the self-assembly of EoCen. The specific oligomerization form of the protein was exhibited by cross-linking experiment.  相似文献   

4.
The Bcl‐2 inhibitor FKBP38 is regulated by the Ca2+‐sensor calmodulin (CaM). Here we show a hitherto unknown low‐affinity cation‐binding site in the FKBP domain of FKBP38, which may afford an additional level of regulation based on electrostatic interactions. Fluorescence titration experiments indicate that in particular the physiologically relevant Ca2+ ion binds to this site. NMR‐based chemical shift perturbation data locate this cation‐interaction site within the β5–α1 loop (Leu90–Ile96) of the FKBP domain, which contains the acidic Asp92 and Asp94 side‐chains. Binding constants were subsequently determined for K+, Mg2+, Ca2+, and La3+, indicating that the net charge and the radius of the ion influences the binding interaction. X‐ray diffraction data furthermore show that the conformation of the β5–α1 loop is influenced by the presence of a positively charged guanidinium group belonging to a neighboring FKBP38 molecule in the crystal lattice. The position of the cation‐binding site has been further elucidated based on pseudocontact shift data obtained by NMR via titration with Tb3+. Elimination of the Ca2+‐binding capacity by substitution of the respective aspartate residues in a D92N/D94N double‐substituted variant reduces the Bcl‐2 affinity of the FKBP3835–153/CaM complex to the same degree as the presence of Ca2+ in the wild‐type protein. Hence, this charge‐sensitive site in the FKBP domain participates in the regulation of FKBP38 function by enabling electrostatic interactions with ligand proteins and/or salt ions such as Ca2+. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A haloalkane dehalogenase (DppA) from Plesiocystis pacifica SIR-1 was identified by sequence comparison in the NCBI database, cloned, functionally expressed in Escherichia coli, purified, and biochemically characterized. The three-dimensional (3D) structure was determined by X-ray crystallography and has been refined at 1.95 Å resolution to an R-factor of 21.93%. The enzyme is composed of an α/β-hydrolase fold and a cap domain and the overall fold is similar to other known haloalkane dehalogenases. Active site residues were identified as Asp123, His278, and Asp249 and Trp124 and Trp163 as halide-stabilizing residues. DppA, like DhlA from Xanthobacter autotrophicus GJ10, is a member of the haloalkane dehalogenase subfamily HLD-I. As a consequence, these enzymes have in common the relative position of their catalytic residues within the structure and also show some similarities in the substrate specificity. The enzyme shows high preference for 1-bromobutane and does not accept chlorinated alkanes, halo acids, or halo alcohols. It is a monomeric protein with a molecular mass of 32.6 kDa and exhibits maximum activity between 33 and 37°C with a pH optimum between pH 8 and 9. The Km and kcat values for 1-bromobutane were 24.0 mM and 8.08 s?1. Furthermore, from the 3D-structure of DppA, it was found that the enzyme possesses a large and open active site pocket. Docking experiments were performed to explain the experimentally determined substrate preferences.  相似文献   

6.
Generation of the amyloid peptide through proteolytic processing of the amyloid precursor protein by beta- and gamma-secretases is central to the etiology of Alzheimer's disease. The highly elusive beta-secretase was recently identified as a transmembrane aspartic proteinase, Asp2 (BACE). The Asp2 homolog Asp1 (BACE2/DRAP) has also been reported to exhibit beta-secretase cleavage of amyloid precursor protein. Most aspartic proteinases are generated as inactive proenzymes, requiring removal of the prodomain to generate active proteinase. Here we show that prodomain processing of Asp1 occurs between Leu(62) and Ala(63) and is autocatalytic. Asp1 cleaved a maltose-binding protein-Asp1 prodomain fusion protein and a synthetic peptide at this site. Mutation of one of the conserved catalytic aspartic acid residues in the active site of Asp1 to asparagine (D110N) abolished this cleavage. Mutation of P(1)' and P(2)' residues in the substrate to phenylalanine reduced cleavage at this site. Asp1 expressed in cells was the mature form, and prodomain processing occurred intramolecularly within the endoplasmic reticulum/early Golgi. Interestingly, a proportion of mature Asp1 was expressed on the cell surface. When full-length Asp1(D110N) was expressed in COS-7 cells, it was not processed, suggesting that no other proteinase can activate Asp1 in these cells.  相似文献   

7.
Using a hydrothermal method, Ce3+/Tb3+ non‐/single‐/co‐doped K‐Lu‐F materials have been synthesized. The X‐ray diffraction (XRD) results suggest that the Ce3+ and/or Tb3+ doping had great effects on the crystalline phases of the final samples. The field emission scanning electron microscopy (FE‐SEM) images indicated that the samples were in hexagonal disk or polyhedron morphologies in addition to some nanoparticles, which also indicated that the doping also had great effects on the sizes and the morphologies of the samples. The energy‐dispersive spectroscopy (EDS) patterns illustrated the constituents of different samples. The enhanced emissions of Tb3+ were observed in the Ce3+/Tb3+ co‐doped K‐Lu‐F materials. The energy transfer (ET) efficiency ηT were calculated based on the fluorescence yield. The ET mechanism from Ce3+ to Tb3+ was confirmed to be the dipole–quadrupole interaction inferred from the theoretical analysis and the experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The enzyme Erwinia chrysanthemi l-asparaginase (ErA) is an important biopharmaceutical product used in the treatment of acute lymphoblastic leukaemia. Like all proteins, certain asparagine (Asn) residues of ErA are susceptible to deamidation to aspartic acid (Asp), which may be a concern with respect to enzyme activity and potentially to pharmaceutical efficacy. Recombinant ErA mutants containing Asn to Asp changes were expressed, purified and characterised. Two mutants with single deamidation sites (N41D and N281D) were found to have approximately the same specific activity (1,062 and 924 U/mg, respectively) as the wild-type (908 U/mg). However, a double mutant (N41D N281D) had an increased specific activity (1261 U/mg). The N41D mutation conferred a slight increase in the catalytic constant (k cat 657 s?1) when compared to the WT (k cat 565 s?1), which was further increased in the double mutant, with a k cat of 798 s?1. Structural analyses showed that the slight changes caused by point mutation of Asn41 to Asp may have reduced the number of hydrogen bonds in this α-helical part of the protein structure, resulting in subtle changes in enzyme turnover, both structurally and catalytically. The increased α-helical content observed with the N41D mutation by circular dichroism spectroscopy correlates with the difference in k cat, but not K m. The N281D mutation resulted in a lower glutaminase activity compared with WT and the N41D mutant, however the N281D mutation also imparted less stability to the enzyme at elevated temperatures. Taken as a whole, these data suggest that ErA deamidation at the Asn41 and Asn281 sites does not affect enzyme activity and should not be a concern during processing, storage or clinical use. The production of recombinant deamidated variants has proven an effective and powerful means of studying the effect of these changes and may be a useful strategy for other biopharmaceutical products.  相似文献   

9.
10.
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein with marked anticoagulant activity. Present studies show that holo-ACF I assumes a compactly folded structure in the range of pH 5–6, in which the most interior Trp residues and quenchers are adjacent. Tb3+ ions can completely replace both Ca2+ ions in holo-ACF I, as determined by equilibrium dialysis. Although the two Tb3+ ions in Tb3+-ACF I have slightly different luminescence efficiencies, both have similar quenching effects on the intrinsic fluorescence, suggesting that probably there are same numbers of Trp residues close to both Tb3+-binding sites. Two Tb3+-binding sites with similar apparent Tb3+ association constant values, (1.69 ± 0.02) × 107 M–1 and (1.42 ± 0.01) × 107 M–1, respectively, were further identified through Tb3+ fluorescence titration. In addition, it has been confirmed from the titration of holo-ACF I and Tb3+-ACF I with NBS that only interior Trp residues are involved in the energy transfer to Tb3+ ions and that all accessible Trp residues located in the surface of holo-ACF I have similar affinity to NBS, while those located in the surface of Tb3+-ACF I have two different kinds of affinity to NBS, which strongly suggests a conformational change of holo-ACF I upon substitution of Tb3+ for Ca2+. The results show that although the Tb3+-altered conformation of ACF I cannot support the binding of Tb3+-ACF I with FXa, determined by nondenaturing PAGE, Tb3+ ions are effective and useful fluorescence probes to analyze the structures and properties of Ca2+-binding sites in ACF I.  相似文献   

11.
The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb3+) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb3+ treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb3+, these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb3+ stress. These roles were closely related to the dose of Tb3+, duration of stress, and growth stages of horseradish.  相似文献   

12.
Bacterial allantoinase (ALLase; EC 3.5.2.5), which catalyzes the conversion of allantoin into allantoate, possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. Here, we characterized ALLase from Escherichia coli BL21. Purified recombinant ALLase exhibited no activity but could be activated when preincubating with some metal ions before analyzing its activity, and was in the order: Mn2+- ≫ Co2+- > Zn2+- > Ni2+- > Cd2+- ~Mg2+-activated enzyme; however, activity of ALLase (Mn2+-activated form) was also significantly inhibited with 5 mM Co2+, Zn2+, and Cd2+ ions. Activity of Mn2+-activated ALLase was increased by adding the reducing agent dithiothreitol (DTT), but was decreased by treating with the sulfhydryl modifying reagent N-ethylmaleimide (NEM). Inhibition of Mn2+-activated ALLase by chelator 8-hydroxy-5-quinolinesulfonic acid (8-HQSA), but not EDTA, was pH-dependent. Analysis of purified ALLase by gel filtration chromatography revealed a mixture of monomers, dimers, and tetramers. Substituting the putative metal binding residues His59, His61, Lys146, His186, His242, and Asp315 with Ala completely abolished the activity of ALLase, even preincubating with Mn2+ ions. On the basis of these results, as well as the pH-activity profile, the reaction mechanism of ALLase is discussed and compared with those of other cyclic amidohydrolases.  相似文献   

13.
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a “cyclic reaction” was stimulated. Of metal ions tested they were effective in the order Pb2+ > Cu2+ > Zn2+ = Cd2+ > Ni2+ > Co2+. The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn2+-binding site(s). A mutant in which βHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn2+. Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn2+-induced FTIR difference spectra of the βHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that βHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.  相似文献   

14.
Thermal stability is of great importance in the application of commercial phytases. Phytase A (PhyA) is a monomeric protein comprising twelve α-helices and ten β-sheets. Comparative molecular dynamics (MD) simulations (at 310, 350, 400, and 500 K) revealed that the thermal stability of PhyA from Aspergillus niger (A. niger) is associated with its conformational rigidity. The most thermally sensitive regions were identified as loops 8 (residues 83–106), 10 (161–174), 14 (224–230), 17 (306–331), and 24 (442–444), which are present on the surface of the protein. It was observed that solvent-exposed loops denature before or show higher flexibility than buried residues. We observed that PhyA begins to unfold at loops 8 and 14, which further extends to loop 24 at the C-terminus. The intense movement of loop 8 causes the helix H2 and beta-sheet B3 to fluctuate at high temperature. The high flexibility of the H2, H10, and H12 helices at high temperature resulted in complete denaturation. The high mobility of loop 14 easily transfers to the adjacent helices H7, H8, and H9, which fluctuate and partially unfold at high temperature (500 K). It was also observed that the salt bridges Asp110–Lys149, Asp205–Lys277, Asp335–Arg136, Asp416–Arg420, and Glu387–Arg400 are important influences on the structural stability but not the thermostability, as the lengths of these salt bridges did not increase with rising temperature. The salt bridges Glu125–Arg163, Asp299–Arg136, Asp266–Arg219, Asp339–Lys278, Asp335–Arg136, and Asp424–Arg428 are all important for thermostability, as the lengths of these bridges increased dramatically with increasing temperature. Here, for the first time, we have computationally identified the thermolabile regions of PhyA, and this information could be used to engineer novel thermostable phytases. Numerous homologous phytases of fungal as well as bacterial origin are known, and these homologs show high sequence similarity. Our findings could prove useful in attempts to increase the thermostability of homologous phytases via protein engineering.  相似文献   

15.
Squalene synthase (SQS, EC 2.5.1.21) is a major enzyme in biosynthesis of isoprenoid (farnesyl pyrophosphate (FPP) squalene). In the present study, we have analyzed SQS enzymes of black cottonwood (Populus trichocarpa, hereafter Pt) and Masson’s pine (Pinus massoniana, hereafter Pm) using bioinformatics tools. PtSQS and PmSQS sequences were found to have very similar physicochemical properties with “squalene/phytoene synthase” domain structure (PF00494). PtSQS sequence was 47.3 kDa weight and 413 amino acids long with a pI value of 6.86, while PmSQS was 46.6 kDa weight and 409 amino acids long with a pI of 7.92. Alignment of SQS protein sequences in 15 plant species showed a highly similar conserved pattern and included 77DTVED81 and 213DYLED217 motifs, which are rich in aspartic acids, for FPP binding sites. In phylogenetic tree, monocots and polycot were clearly separated from dicots with high bootstrap value (99 %). A total of 10 interaction partners were predicted for PtSQS and PmSQS proteins. Nine of them were hypothetical proteins (related with phytosterol biosynthesis), while one was putative uncharacterized protein. Similar 3D structures and identical binding sites were predicted for pine and poplar. In docking, FPP-PtSQS was found to make 8 H bonds with Asp81, Asp217, Glu80, and Gln206 residues in poplar with highest affinity while FPP-PmSQS made 7 H bonds with Arg49, Arg74, Ser48, and Val47 residues in pine with highest affinity. The results of this study will provide valuable theoretical knowledge for future studies of identification and characterization of SQS genes and proteins in various tree species and will provide an insight for studies of biotechnological manipulation of sterol biosynthesis pathway to enhance the plant stress tolerance and productivity.  相似文献   

16.
Spermidine synthase (Spds) catalyzes the formation of spermidine by transferring the aminopropyl group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine. The Synechococcus spds gene encoding Spds was expressed in Escherichia coli. The purified recombinant enzyme had a molecular mass of 33 kDa and showed optimal activity at pH 7.5, 37?°C. The enzyme had higher affinity for dcSAM (K m, 20 µM) than for putrescine (K m, 111 µM) and was highly specific towards the diamine putrescine with no activity observed towards longer chain diamines. The three-dimensional structural model for Synechococcus Spds revealed that most of the ligand binding residues in Spds from Synechococcus sp. PCC 7942 are identical to those of human and parasite Spds. Based on the model, the highly conserved acidic residues, Asp89, Asp159 and Asp162, are involved in the binding of substrates putrescine and dcSAM and Pro166 seems to confer substrate specificity towards putrescine.  相似文献   

17.
The presence of a divalent metal ion in a negatively charged aspartic acid pocket is essential for phosphorylation of response regulator proteins. Here, we present metal binding studies of the Bacillus subtilis response regulator Spo0F using NMR and μESI-MS. NMR studies show that the divalent metals Ca2+, Mg2+ and Mn2+ primarily bind, as expected, in the Asp pocket phosphorylation site. However, identical studies with Cu2+ show distinct binding effects in three specific locations: (i) the Asp pocket, (ii) a grouping of charged residues at a site opposite of the Asp pocket, and (iii) on the β4-α4 loop and the β5/α5 interface, particularly around and including H101. μESI-MS studies stoichiometrically confirm the NMR studies and demonstrate that most divalent metal ions bind to Spo0F primarily in a 1:1 ratio. Again, in the case of Cu2+, multiple metal-bound species are observed. Subsequent experiments reveal that Mg2+ supports phosphotransfer between KinA and Spo0F, while Cu2+ fails to support KinA phosphotransfer. Additionally, the presence of Cu2+ at non-lethal concentrations in sporulation media for B. subtilis and the related organism Pasteuria penetrans was found to inhibit spore formation while continuing to permit vegetative growth. Depending on the type of divalent metal ion present, in vitro phosphorylation of Spo0F by its cognate kinase KinA can be inhibited.  相似文献   

18.
In this study, the acid-soluble collagen (ASC), extracted from the fish scales of the Caspian white fish (Rutilus Firisikutum) was studied. The thermo-gravimetric analysis (TGA) showed the maximum demineralization accomplished after 48 h of EDTA treatment. SDS-PAGE and FT-IR spectroscopy confirmed that extracted ASC was mainly type I collagen. FE-SEM images confirmed the porous and filamentary structure. The denaturation temperature (Td) of ASC was 19 °C, and the transition heat achieved 9.6 J/g. Collagen self-assembly exhibit important potential because for biomedical applications and green technologies. Various inter- and intra-molecular no-covalent interactions such as hydrogen bonding, hydrophobic, electrostatic and Van der Waals interactions influence the formation of self-assembled collagen. Therefore, critical factors as concentration of ASC, temperature, pH, and ionic strength play crucial role in function integration and structural modulation. The impacts of those external triggers on the kinetic self-assembly of ASC demonstrated a two-phase kinetic process, a sigmoidal plot. ACS showed pronounced self-assembly behavior when temperature and concentration reach above 14 °C and 0.125 mg/ml, higher concentration and/or temperature could stimulate the ASC self-assembly. The optimum pH value for ASC self-assembly was pH = 7. The effect of ionic strength on ASC self-assembly showed the turbidity increases significantly in 131.2 mM salt concentration. The process of self-assembly is mainly driven by thermodynamics. The thermodynamic study of collagen self-assembly illustrated that the activation energy, Ea = 44.3 kJ/mol, the frequency factor, A = 117 × 105 s?1, the enthalpy transition, ΔH? = 42.98 kJ/mol, and the entropy transition, ΔS? = ?0.12 kJ/mol.K, respectively. These findings show that kinetics factors not only influence the self-assembly structure of ASC but also regulate the activation complex structure in the transition state.  相似文献   

19.
KNaSO4 microphosphor doped with Ce,Gd and Ce,Tb and prepared by a wet chemical method was studied using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) characterization. KNaSO4 has a 5‐µm particle size detected by SEM. KNaSO4:Ce3+,Tb3+ showed blue and green emission (at 494 nm, 557 nm, 590 nm) of Tb3+ due to 5D47FJ (J = 4, 5, 6) transitions. KNaSO4:Ce3+,Gd3+ showed luminescence in the ultraviolet (UV) light region at 314 nm for an excitation at 271 nm wavelength. It was observed that efficient energy transfer took place from Ce3+ → Gd3+ and Ce3+ → Tb3+ sublattices indicating that Ce3+ could effectively sensitize Gd3+ or Tb3+ (green emission). Ce3+ emission weakened and Gd3+ or Tb3+ enhanced the emission significantly in KNaSO4. This paper discusses the development and understanding of photoluminescence and the effect of Tb3+ and Gd3+ on KNaSO4:Ce3+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Two complexes of Tb3+, Gd3+/Tb3+ and one heteronuclear crystal Gd3+/Tb3+ with phenoxyacetic acid (HPOA) and 2,4,6‐tris‐(2‐pyridyl)‐s–triazine (TPTZ) have been synthesized. Elemental analysis, rare earth coordination titration, inductively coupled plasma atomic emission spectrometry (ICP‐AES) and thermogravimetric analysis‐differential scanning calorimetry (TG‐DSC) analysis show that the two complexes are Tb2(POA)6(TPTZ)2·6H2O and TbGd(POA)6(TPTZ)2·6H2O, respectively. The crystal structure of TbGd(POA)6(TPTZ)2·2CH3OH was determined using single‐crystal X‐ray diffraction. The monocrystal belongs to the triclinic system with the P‐1 space group. In particular, each metal ion is coordinately bonded to three nitrogen atoms of one TPTZ and seven oxygen atoms of three phenoxyacetic ions. Furthermore, there exist two coordinate forms between C6H5OCH2COO and the metal ions in the crystal. One is a chelating bidentate, the other is chelating and bridge coordinating. Fluorescence determination shows that the two complexes possess strong fluorescence emissions. Furthermore, the fluorescence intensity of the Gd3+/Tb3+ complex is much stronger than that of the undoped complex, which may result from a decrease in the concentration quench of Tb3+ ions, and intramolecular energy transfer from the ligands coordinated with Gd3+ ions to Tb3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号