首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acylation of anthocyanins with hydroxycinnamic acid derivatives is one of the most important and less understood modification reactions during anthocyanin biosynthesis. Anthocyanin aromatic acyltransferase catalyses the transfer of hydroxycinnamic acid moieties from their CoA esters to the glycosyl groups of anthocyanins. A full-length cDNA encoding the anthocyanin 5-aromatic acyltransferase (5AT) ( EC 2.3.1.153 ) that acylates the glucose bound at the 5-position of anthocyanidin 3,5-diglucoside was isolated from petals of Gentiana triflora on the basis of the amino acid sequence of the purified enzyme. The isolated full-length cDNA had an open reading frame of 469 amino acids and the calculated molecular weight was 52 736. The deduced amino acid sequence contains consensus motifs that are conserved among the putative acyl CoA-mediated acyltransferases, and this indicates that 5AT is a member of a proposed superfamily of multifunctional acyltransferases ( St-Pierre et al . (1998 ) Plant J. 14, 703–713). The cDNA was expressed in Escherichia coli and yeast, and confirmed to encode 5AT. The enzymatic characteristics of the recombinant 5AT were consistent with those of the native gentian 5AT. Immunoblot analysis using specific antibodies to 5AT showed that the 5AT protein is present in petals, but not in sepals, stems or leaves of G. triflora . RNA blot analysis showed that the 5AT gene is expressed only in petals and that its expression is temporally regulated during flower development coordinately with other anthocyanin biosynthetic genes. Immunohistochemical analysis demonstrated that the 5AT protein is specifically expressed in the outer epidermal cells of gentian petals and that it is localized mainly in the cytosol.  相似文献   

2.
3.
Regenerating gene (Reg), first isolated from a regenerating islet cDNA library, encodes a secretory protein with a growth stimulating effect on pancreatic beta cells that ameliorates the diabetes of 90% depancreatized rats and non-obese diabetic mice. Reg and Reg-related genes have been revealed to constitute a multigene family, the Reg family, which consists of four subtypes (types I, II, III, IV) based on the primary structures of the encoded proteins of the genes [Diabetes 51(Suppl. 3) (2002) S462]. Plural type III Reg genes were found in mouse and rat. On the other hand, only one type III REG gene, HIP/PAP (gene expressed in hepatocellular carcinoma-intestine-pancreas/gene encoding pancreatitis-associated protein), was found in human. In the present study, we found a novel human type III REG gene, REG III. This gene is divided into six exons spanning about 3 kilobase pairs (kb), and encodes a 175 amino acid (aa) protein with 85% homology with HIP/PAP. REG III was expressed predominantly in pancreas and testis, but not in small intestine, whereas HIP/PAP was expressed strongly in pancreas and small intestine. IL-6 responsive elements existed in the 5'-upstream region of the human REG III gene indicating that the human REG III gene might be induced during acute pancreatitis. All the human REG family genes identified so far (REG Ialpha, REG Ibeta, HIP/PAP, REG III and REG IV) have a common gene structure with 6 exons and 5 introns, and encode homologous 158-175-aa secretory proteins. By database searching and PCR analysis using a yeast artificial chromosome clone, the human REG family genes on chromosome 2, except for REG IV on chromosome 1, were mapped to a contiguous 140 kb region of the human chromosome 2p12. The gene order from centromere to telomere was 5' HIP/PAP 3'-5' RS 3'-3' REG Ialpha 5'-5' REG Ibeta 3'-3' REG III 5'. These results suggest that the human REG gene family is constituted from an ancestor gene by gene duplication and forms a gene cluster on the region.  相似文献   

4.
5.
Tang WK  Chan CB  Cheng CH  Fong WP 《FEBS letters》2005,579(17):3759-3764
Subsequent to our earlier report on the first purification of antiquitin protein from seabream liver and demonstration of its enzymatic activity [FEBS Letters 516 (2002) 183-186], we report herein the cloning of its full-length cDNA sequence. The open reading frame encodes a protein of 511 amino acids. Results of RT-PCR indicate that antiquitin is highly expressed in both the seabream liver and kidney. Transfection studies in cultured eukaryotic cells provided further evidence that it is a cytosolic protein. Bacterial expression of the enzyme was also performed. The purified recombinant protein was demonstrated to exhibit similar kinetic properties as the native enzyme.  相似文献   

6.
The product of transmembrane and coiled-coil domains 1 (TMCO1) gene is a member of DUF841 superfamily of several eukaryotic proteins with unknown function. The partial DNA sequence of porcine TMCO1 was first cloned with a pig 567 bp ORF encoding 188 amino acids. By tissues expression analysis, the TMCO1 was found highly expressed in the liver, kidney and heart. The porcine TMCO1 protein was subsequently demonstrated to localize in the mitochondrion by confocal fluorescence microscopy. This data provides an important basis for conducing further studies on the functions and regulatory mechanisms underlying the role of TMCO1 gene.  相似文献   

7.
Tubulointerstitial nephritis antigen (TIN-ag) is an extracellular matrix basement protein which was originally identified as a target antigen involved in anti-tubular basement membrane (TBM) antibody-mediated interstitial nephritis (TIN). Further investigations elucidated that TIN-ag plays a role in renal tubulogenesis and that TIN-ag is defected in hereditary tubulointerstitial disorder such as juvenile nephronophthisis. We previously isolated and characterized 54 kDa glycoprotein as TIN-ag. cDNA encoding rabbit and mouse TIN-ag has recently been identified. In the present study, the cDNA of the human homologue of TIN-ag was cloned and its nucleotide sequence was determined (Accession No. AB022277; the DDBJ nucleotide sequence database). Deduced amino acid sequence (476 aa) exhibited the presence of a signal peptide (1-18 aa), cysteine residues termed follistatin module, six potential glycosylation sites, and an ATP/GTP-binding site. Homology search revealed approximately 85% homology with both rabbit and mouse TIN-ag, and also some ( approximately 40%) similarity with C. elegans. Human TIN-ag contained a sequence similar to several classes of extracellular matrix molecules in amino terminal region and to cathepsin family of cysteine proteinases in the carboxyl terminal region. Northern blot analysis revealed exclusive expression of this molecule in human adult and fetal kidney tissues. Using a monoclonal antibody recognizing human TIN-ag, protein expression ( approximately 50 kDa) was identified in cultured COS-1 cells transfected with human TIN-ag cDNA. The human TIN-ag was mapped to chromosome 6p11.2-12 by fluorescence in situ hybridization. These results may provide further evidence for understanding TIN-ag molecule and clues for gene analysis of juvenile nephronophthisis.  相似文献   

8.
C-type lectins have been demonstrated to play important roles in invertebrate innate immunity by mediating the recognition of pathogens and clearing the micro-invaders. In the present study, a C-type lectin gene (denoted as VpCTL) was identified from Venerupis philippinarum by expressed sequence tag and rapid amplification of cDNA ends approaches. The full-length cDNA of VpCTL consists of 904 nucleotides with an open-reading frame of 456 bp encoding a peptide of 151 amino acids. The deduced amino acid sequence of VpCTL shared high similarity with C-type lectins from other species. The C-type lectin domain and the characteristic EPN and WND motifs were found in VpCTL. The VpCTL mRNA was dominantly expressed in the haemocytes of the V. philippinarum. After Listonella anguillarum challenge, the temporal expression of VpCTL mRNA in haemocytes was increased by 97- and 84-fold at 48 and 96 h, respectively. With high expression level in haemocytes and hepatopancreas, and the up-regulated expression in haemocytes indicted that VpCTL was perhaps involved in the immune responses to L. anguillarum challenge.  相似文献   

9.
Sirt2, a NAD+-dependent histone deacetylase, plays a critical role in regulating lifespan, metabolism, mitosis and adipocyte differentiation. Here two bands of the porcine Sirt2 protein were found by western blotting, so we speculated existence of Sirt2 isoforms. Next, we cloned the porcine Sirt2 gene, and also found its alternative splice variant and named the novel splicing variant Sirt2T. The complete cDNA sequence of Sirt2T is 1059 bp, encoding a deduced protein of 352 amino acids which is 39 amino acids shorter at the N-terminus than Sirt2. RT–PCR revealed that the Sirt2T mRNA is extensively expressed in porcine tissues, and can be expressed during adipocyte differentiation. In addition, immunofluorescence and transfection demonstrated that Sirt2T is located in the cytoplasm and nucleus.  相似文献   

10.
11.
The manA gene of Thermoanaerobacterium polysaccharolyticum was cloned in Escherichia coli. The open reading frame of manA is composed of 3,291 bases and codes for a preprotein of 1,097 amino acids with an estimated molecular mass of 119,627 Da. The start codon is preceded by a strong putative ribosome binding site (TAAGGCGGTG) and a putative -35 (TTCGC) and -10 (TAAAAT) promoter sequence. The ManA of T. polysaccharolyticum is a modular protein. Sequence comparison and biochemical analyses demonstrate the presence of an N-terminal leader peptide, and three other domains in the following order: a putative mannanase-cellulase catalytic domain, cellulose binding domains 1 (CBD1) and CBD2, and a surface-layer-like protein region (SLH-1, SLH-2, and SLH-3). The CBD domains show no sequence homology to any cellulose binding domain yet reported, hence suggesting a novel CBD. The duplicated CBDs, which lack a disulfide bridge, exhibit 69% identity, and their deletion resulted in both failure to bind to cellulose and an apparent loss of carboxymethyl cellulase and mannanase activities. At the C-terminal region of the gene are three repeats of 59, 67, and 56 amino acids which are homologous to conserved sequences found in the S-layer-associated regions within the xylanases and cellulases of thermophilic members of the Bacillus-Clostridium cluster. The ManA of T. polysaccharolyticum, besides being an extremely active enzyme, is the only mannanase gene cloned which shows this domain structure.  相似文献   

12.
Shen G  Pang Y  Wu W  Miao Z  Qian H  Zhao L  Sun X  Tang K 《Journal of plant physiology》2005,162(10):1160-1168
A novel defensin gene was isolated from Ginkgo biloba. The full-length cDNA of G. biloba defensin (designated as Gbd) was 534bp. The cDNA contained a 240-bp open reading frame encoding an 80-amino acid protein of 5.68 kDa with a potential 30 aa signal peptide. The putative GbD mature protein showed striking similarity to other plant defensins, representing low molecular size antimicrobial polypeptides. Eight cysteine sites conserved in plant defensins were also found in GbD at similar positions. Three-dimensional structure modeling showed that GbD strongly resembled defensin from tobacco (NaD1) and consisted of an alpha-helix and a triple-strand antiparallel beta-sheet that were stabilized by four intramolecular disulfide bonds, implying GbD may have functions similar to NaD1. The genomic DNA gel blot indicated that Gbd belonged to a multigene family. Expression analysis revealed that Gbd was up-regulated by wounding and methyl jasmonate treatments, suggesting that Gbd is potentially involved in plant resistance or tolerance to pathogens during wounding.  相似文献   

13.
We have isolated a cDNA clone (mERD2) for the mammalian (bovine) homologue of the yeast ERD2 gene, which codes for the yeast HDEL receptor. The deduced amino acid sequence bears extensive homology to its yeast counterpart and is almost identical to a previously described human sequence. The sequence predicts a very hydrophobic protein with multiple membrane spanning domains, as confirmed by analysis of the in vitro translation product. The protein encoded by mERD2 (p23) has widespread occurrence, being present in all the cell types examined. p23 was localized to the cis-side of the Golgi apparatus and to a spotty intermediate compartment which mediates ER to Golgi transport. A majority of the intracellular staining could be accumulated in the intermediate compartment by a low temperature (15 degrees C) or brefeldin A. During recovery from these treatments, the spotty intermediate compartment staining of p23 was shifted to the perinuclear staining of the Golgi apparatus and tubular structures marked by p23 were observed. These tubular structures may serve to mediate transport between the intermediate compartment and the Golgi apparatus.  相似文献   

14.
15.
16.
17.
Murine macrophages have previously been shown to secrete a zinc-dependent proteinase that can degrade elastin. In this report, we identify murine macrophage elastase (MME) cDNA and show that it is a distinct member of the metalloproteinase gene family. Small amounts of MME were purified to homogeneity, and N-terminal amino acid sequence was obtained. This sequence was used to obtain a partial cDNA clone by the polymerase chain reaction; a cDNA library derived from a mouse macrophage-like cell line (P388D1) was screened with this probe. A full-length MME cDNA spanning approximately 1.8 kilobases contained an open reading frame of 1386 base pairs; the predicted molecular mass of the MME proenzyme is 53 kDa. The gene encoding MME is represented only once in the mouse genome and is located on chromosome 9. Despite a size that is similar to other metalloproteinases, MME is distinct, sharing only 33-48% amino acid homology with other metalloproteinases. In contrast to other metalloenzymes, MME appears to be rapidly processed to an active truncated form (N-terminal and C-terminal cleavage). We expressed recombinant MME in Escherichia coli and demonstrated that it has significant elastolytic activity that is specifically inhibited by the tissue inhibitor of metalloproteinases. MME is therefore a true metalloproteinase that may be involved in tissue injury and remodeling.  相似文献   

18.
Potassium (K+) channels are critical for a variety of cell functions, including modulation of action potentials, determination of resting membrane potential, and development of memory and learning. In addition to their role in regulating myocyte excitability, cardiac K+ channels control heart rate and coronary vascular tone and are implicated in the development of arrhythmias. We report here the cloning and sequencing of a k+ channel gene, KCNA1, derived from a human cardiac cDNA library and the chromosomal localization of the corresponding genomic clone. Oligonucleotides based on a delayed rectifier K+ channel gene were used in PCR reactions with human genomic DNA to amplify the S4-S6 regions of several different K+ channel genes. These sequences were used to isolate clones from a human cardiac cDNA library. We sequenced one of these clones, HCK1. HCK1 contains putative S2-S6 domains and shares approximately 70% sequence homology with previously isolated Shaker homologues. HCK1 was used to screen human cosmid libraries and a genomic clone was isolated. By sequencing the genomic clones, a putative S1 domain and translation initiation sequences were identified. Genomic mapping using human-rodent somatic cell panels and in situ hybridization with human metaphase chromosomes have localized KCNA1 to the distal short arm of human chromosome 12. This work is an important step in the study of human cardiac K+ channel structure and function and will be of use in the study of human inherited disease.  相似文献   

19.
Zhou F  Zheng L  Zhang D  Huang J  Qiu L  Yang Q  Jiang S 《Marine Genomics》2011,4(2):121-128
In present study, a thrombospondin gene was obtained from the ovary and neurosecretory organ in eyestalk cDNA library of black tiger prawn (Penaeus monodon). The full-length P. monodon thrombospondin (PmTSP) cDNA contained a 5' untranslated region (UTR) of 9 bp, an open reading frame (ORF) of 2778 bp encoding a polypeptide of 925 amino acids with molecular mass 100.57 kDa, and a 3'UTR of 99 bp. ScanProsite analysis indicated that PmTSP contained four chitin-binding type-II domains, an EGF-like domain, eight thrombospondin type-III repeats and one thrombospondin C-terminal domain. Homology analysis of the deduced amino acid sequence of the PmTSP with other known TSP sequences by MatGAT software revealed that the PmTSP shows very high homology with the sequences of Fennerpenaeus chinensis (89.9% similarity, 83.8% identity). Analysis of the tissue expression pattern of the PmTSP gene showed that the PmTSP mRNA was expressed in all tested tissues, including hepatopancreas, ovary, muscle, intestine, neurosecretory organ in eyestalk, neurosecretory organ in brain, stomach, and heart, with highest level in the ovary. Furthermore, the PmTSP expression was found to be of high level in six development stages of the ovary. The results indicated that PmTSP might play an important role in ovarian development.  相似文献   

20.
Myotrophin (MTPN) is an effective growth factor in promoting skeletal muscle growth in vitro and vivo and has been purified from porcine skeletal muscle. However, in pigs, the information on MTPN gene is very limited. In this study, we cloned cDNA sequences and analyzed the genomic structure of porcine MTPN gene. The deduced amino acid sequence of porcine MTPN contains two the ankyrin repeat domains. RT-PCR analysis revealed that porcine MTPN gene was widely expressed in many tissues, a high expression level was observed in the spleen, liver and uterus, and transient transfection indicated that porcine MTPN proteins was located in cytoplasms within Pig Kidney Epithelial cells (PK15). Quantitative real-time PCR (qRT-PCR) analyses showed that MTPN expression peaked at embryonic 65 day post conception (dpc). During postnatal muscle development, MTPN expression was down-regulated from the 3 day to the 180 day in Yorkshire pigs. This result suggests that the MTPN gene may be important gene for skeletal muscle growth and provides useful information for further studies on its roles in porcine skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号