首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pre-anoxic MBBR system was subjected to increasing organic loading rates up to 18 gCOD/(m2 day). At 3 gCOD/(m2 day), most of the incoming organic matter was removed via denitrification. However, at higher loads, anoxic COD removal became limited by the nitrite/nitrate supply from the aerobic reactor, which assumed an important role in this conversion. Despite the application of low dissolved oxygen (DO) levels (<2 mg/L) in this tank, nitrification was observed to be nearly complete until 8 gCOD/(m2 day). As the organic input was increased, the maximum specific nitrifying activity gradually declined. Activity tests suggested that an oxygen-limited environment was established in the biofilm. At lower loads [3–8 gCOD/(m2 day)], the nitrification product obtained was affected by the DO concentration, whereas from 16 to 21 gCOD/(m2 day), nitrite/nitrate profiles were likely associated with microbial stratification in the biofilm. The results also indicated that the role of the suspended biomass in the overall nitrification and denitrification can be very significant in high loaded MBBRs and should not be neglected, even at low HRTs.  相似文献   

2.
In this study, anammox bacteria were rapidly enriched in sequencing batch biofilm reactors (SBBRs) with different inoculations. The activated sludge taken from a sequencing batch reactor was used and inoculated to SBBR1, while SBBR2 was seeded with stored anaerobic sludge from an upflow anaerobic fixed bed (2-year stored at 5–15 °C). Nitrogen removal performance, anammox activity, biofilm characteristics and variation of the microbial community were evaluated. The maximum total nitrogen loading rate (NLR) of SBBR1 gradually reached to 1.62 kg?N/(m3/day) with a removal efficiency higher than 88 % and the NLR of SBBR2 reached to 1.43 kg?N/(m3/day) with a removal efficiency of 86 %. SBBR2 was more stable compared to SBBR1. These results, combined with molecular techniques such as scanning electron microscope, fluorescence in situ hybridization, and terminal restriction fragment length polymorphism, indicated that different genera of anammox bacteria became dominant. This research also demonstrates that SBBR is a promising bioreactor for starting up and enriching anammox bacteria.  相似文献   

3.
Sequencing batch reactors were used to study anaerobic ammonium oxidation (anammox) process under temperature shock. Both long-term (15–35 °C) and short-term (10–50 °C) temperature effects on nitrogen removal performance were performed. In reactor operation test, the results indicated that ammonium removal rate decreased from 0.35 kg/(m3 day) gradually to 0.059 kg/(m3 day) when temperature dropped from 35 to 15 °C. Although bacteria morphology was not modified, sludge settling velocity decreased with decreasing temperature. In batch test, apparent activation energy (Ea) increased with decreasing temperature, which suggested the activity decrease of anaerobic ammonium oxidizing bacteria (AAOB). Low temperature inhibited AAOB and weakened nitrogen removal performance. The cardinal temperature model with inflection was first used to describe temperature effect on anammox process. Simulated results revealed that anammox reaction could occur at 10.52–50.15 °C with maximum specific anammox activity of 0.50 kg/(kg day) at 36.72 °C. The cold acclimatization of AAOB could be achieved and glycine betaine could slightly improve nitrogen removal performance at low temperature.  相似文献   

4.
A plug-flow type anaerobic ammonium oxidation (anammox) reactor was developed using malt ceramics (MC) produced from carbonized spent grains as the biomass carriers for anammox sludge. Partial nitrified effluent of the filtrate from the sludge dehydrator of a brewery company was used as influent to a 20 L anammox reactor using MC. An average volumetric nitrogen removal rate (VNR) of 8.78 kg-N/m3/day was maintained stably for 76 days with 1 h of HRT. In a larger anammox reactor (400 L), an average VNR of 4.84 kg-N/m3/day could be maintained for 86 days during the treatment of low strength synthetic inorganic wastewater. As a result of bacterial community analysis for the 20 L anammox reactor, Asahi BRW1, probably originating from the wastewater collected at Asahi Breweries, was detected as the dominant anammox bacterium. These anammox reactors were characterized by a high NH4-N removal capacity for low strength wastewater with a short hydraulic retention time.  相似文献   

5.
This study assessed the technical feasibility of treating sewage with a combination of direct anaerobic treatment and autotrophic nitrogen removal, while simultaneously achieving energy recovery and nitrogen removal under moderately low temperatures. The concentrations of ammonia, nitrite, and COD in effluent were below 1, 0.1, and 30 mg/L, respectively. In the up-flow, anaerobic sludge fixed-bed, there was no obvious change observed in the total methane production at temperatures of 35?±?1 °C, 28?±?1 °C, 24?±?3 °C, and 17?±?3 °C, with the accumulation of volatile fatty acids occurring with decreasing temperatures. The control strategy employed in this study achieved a stable effluent with equimolar concentrations of nitrite and ammonium, coupled with high nitrite accumulation (>97 %) in the partial nitrification sequencing batch reactor system at moderately low temperatures. In the anaerobic ammonium oxidation (anammox) reactor, a short hydraulic retention time of 0.96 h, with a nitrogen removal rate of 0.83 kgN/(m3/day) was achieved at 12–15 °C. At low temperatures, the corresponding fluorescence in situ hybridization image revealed a high amount of anammox bacteria. This study demonstrates that efficient nitrogen removal and energy recovery from sewage at moderately low temperatures can be achieved by utilizing a combined system. Additionally, this system has the potential to become energy-neutral or even energy-producing.  相似文献   

6.
This is a scale-down study of a 500-m3 methane recovery test plant for anaerobic treatment of palm oil mill effluent (POME) where biomass washout has become one of the problems because of the continuous mixing of effluent during anaerobic treatment of POME. Therefore, in this study, anaerobic POME treatment using a scaled down 50-l bioreactor which mimicked the 500-m3 bioreactor was carried out to improve biogas production with and without biomass sedimentation. Three sets of experiments were conducted under different conditions in terms of biomass sedimentation applied to the system. The first experiment was operated under semi-continuous mode whereas the second and third experiments were operated based on mix and settle mode. As expected, biomass retention improved the anaerobic process as the POME treatment incorporated with mix and settle system were able to operate at an organic loading rate (OLR) of 3.5 and 6.0 kg COD/m3/day respectively, while the semi-continuous operated anaerobic treatment only achieved OLR of 3.0 kg COD/m3/day. The highest biogas and methane production rates achieved were 2.42 m3/m3 of reactor/day and 0.992 m3/m3 of reactor/day, respectively at OLR 6.0 kg COD/m3/day. The biomass or solids retention in the reactors was represented by the total solids measured in this study.  相似文献   

7.
Litter inputs are expected to have a strong impact on soil N2O efflux. This study aimed to assess the effects of the litter decomposition process and nutrient efflux from litter to soil on soil N2O efflux in a tropical rainforest. A paired study with a control (L) treatment and a litter-removed (NL) treatment was followed for 2 years, continuously monitoring the effects of these treatments on soil N2O efflux, fresh litter input, decomposed litter carbon (LCI) and nitrogen (LNI), soil nitrate (NO3 ?–N), ammonium (NH4 +–N), dissolved organic carbon (DOC), and dissolved nitrogen (DN). Soil N2O flux was 0.48 and 0.32 kg N2O–N ha?1 year?1 for the L and NL treatments, respectively. Removing the litter caused a decrease in the annual soil N2O emission by 33%. The flux values from the litter layer were higher in the rainy season as compared to the dry season (2.10 ± 0.28 vs. 1.44 ± 0.35 μg N m?2 h?1). The N2O fluxes were significantly correlated with the soil NO3 ?–N contents (P < 0.05), indicating that the N2O emission was derived mainly from denitrification as well as other NO3 ? reduction processes. Suitable soil temperature and moisture sustained by rainfall were jointly attributed to the higher soil N2O fluxes of both treatments in the rainy season. The N2O fluxes from the L were mainly regulated by LCI, whereas those from the NL were dominated jointly by soil NO3 ? content and temperature. The effects of LCI and LNI on the soil N2O fluxes were the greatest in the 2 months after litter decomposition. Our results show that litter may affect not only the variability in the quantity of N2O emitted, but also the mechanisms that govern N2O production. However, further studies are still required to elucidate the impacting mechanisms of litter decomposition on N2O emission from tropical forests.  相似文献   

8.
The kinetic behavior, oxidizing ability and tolerance to m-cresol of a nitrifying sludge exposed to different initial concentrations of m-cresol (0–150 mg C L?1) were evaluated in a sequencing batch reactor fed with 50 mg NH4 +-N L?1 and operated during 4 months. Complete removal of ammonium and m-cresol was achieved independently of the initial concentration of aromatic compound in all the assays. Up to 25 mg m-cresol-C L?1 (C/N ratio of 0.5), the nitrifying yield (Y-NO3 ?) was 0.86 ± 0.05, indicating that the nitrate was the main product of the process; no biomass growth was detected. From 50 to 150 mg m-cresol-C L?1 (1.0 ≤ C/N ≤ 3.0), simultaneous microbial growth and partial ammonium-to-nitrate conversion were obtained, reaching a maximum microbial total protein concentration of 0.763 g L?1 (247 % of its initial value) and the lowest Y-NO3 ? 0.53 ± 0.01 at 150 mg m-cresol-C L?1. m-Cresol induced a significant decrease in the values of both specific rates of ammonium and nitrite oxidation, being the ammonium oxidation pathway the mainly inhibited. The nitrifying sludge was able to completely oxidize up to 150 mg m-cresol-C L?1 by SBR cycle, reaching a maximum specific removal rate of 6.45 g m-cresol g?1 microbial protein-N h?1. The number of SBR cycles allowed a metabolic adaptation of the nitrifying consortium since nitrification inhibition decreased and faster oxidation of m-cresol took place throughout the cycles.  相似文献   

9.
A Mastigocladus species was isolated from the hot spring of Jakrem (Meghalaya) India. Uptake and utilization of nitrate, nitrite, ammonium and amino acids (glutamine, asparagine, arginine, alanine) were studied in this cyanobacterium grown at different temperatures (25°C, 45°C). There was 2–3 fold increase in the heterocyst formation and nitrogenase activity in N-free medium at higher temperature (45°C). Growth and uptake and assimilation of various nitrogen sources were also 2–3 fold higher at 45°C indicating that it is a thermophile. The extent of induction and repression of nitrate uptake by NO3 and NH4 +, respectively, differed from that of nitrite. It appeared that Mastigocladus had two independent nitrate/nitrite transport systems. Nitrate reductase and nitrite reductase activitiy was not NO3 -inducible and ammonium or amino acids caused only partial repression. Presence of various amino acids in the media partially repressed glutamine synthetase activity. Ammonium (methylammonium) and amino acid uptake showed a biphasic pattern, was energy-dependent and the induction of uptake required de novo protein synthesis. Ammonium transport was substrate (NH4 +)-repressible, while the amino acid uptake was substrate inducible. When grown at 25°C, the cyanobacterium formed maximum akinetes that remained viable upto 5 years under dry conditions.  相似文献   

10.
Because benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol are important contaminants present in Brazilian gasoline, it is essential to develop technology that can be used in the bioremediation of gasoline-contaminated aquifers. This paper evaluates the performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor fed with water containing gasoline constituents under denitrifying conditions. Two HAIB reactors filled with polyurethane foam matrices (5 mm cubes, 23 kg/m3 density and 95 % porosity) for biomass attachment were assayed. The reactor fed with synthetic substrate containing protein, carbohydrates, sodium bicarbonate and BTEX solution in ethanol, at an Hydraulic retention time (HRT) of 13.5 h, presented hydrocarbon removal efficiencies of 99 % at the following initial concentrations: benzene 6.7 mg/L, toluene 4.9 mg/L, m-xylene and p-xylene 7.2 mg/L, ethylbenzene 3.7 mg/L, and nitrate 60 mg N/L. The HAIB reactor fed with gasoline-contaminated water at an HRT of 20 h showed hydrocarbon removal efficiencies of 96 % at the following initial concentrations: benzene, 4.9 mg/L; toluene, 7.2 mg/L; m-xylene, 3.7 mg/L; and nitrate 400 mg N/L. Microbiological observations along the length of the HAIB reactor fed with gasoline-contaminated water confirmed that in the first segment of the reactor, denitrifying metabolism predominated, whereas from the first sampling port on, the metabolism observed was predominantly methanogenic.  相似文献   

11.
In this study, an aged refuse bioreactor was constructed to remove nitrogen in a mature landfill leachate. The nitrogen removal efficiency and the microbial community composition in the bioreactor were investigated. The results showed that the aged refuse bioreactor removed more than 90 % of total nitrogen in the leachate under the nitrogen loading rate (NLR) of 0.74 g/kg (vs) day, and the total nitrogen removal rate decreased to 62.2 % when NLR increased up to 2.03 g/kg (vs) day. Quantitative polymerase chain reaction results showed that the average cell number of ammonia-oxidizing bacteria in the bioreactor was 1.58?×?108 cells/g, which accounted for 0.41 % of total bacteria. The number of anammox bacteria in the reactor was 1.09?×?108 cells/g, which accounted for 0.27 % of total bacteria. Isotopic 15N tracing experiments showed that nearly 10 % of nitrogen was removed by anammox. High-throughout 454 pyrosequencing revealed that the predominant bacteria in the bioreactor were Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Gemmatimonadetes, including various nitrifiers and denitrifiers with diverse heterotrophic and autotrophic metabolic pathways, supporting that nitrogen was removed through different pathways in this aged refuse bioreactor.  相似文献   

12.
The behavior of Myrothecium verrucaria, artificially inoculated on spinach, was studied under seven different temperature conditions (from 5 to 35 °C) and under eight different combinations of temperature and CO2 concentration (14–30 °C and 775–870 or 1550–1650 mg/m3). The isolate used for this study was growing well on spinach, and the mycotoxins verrucarin A and roridin E were produced under all tested temperature and CO2 conditions. The maximum levels of verrucarin A (18.59 ng/g) and roridin E (49.62 ng/g) were found at a temperature of 26–30 °C and a CO2 level of 1550–1650 mg/m3. Rises in temperature as well as in temperature and CO2 concentrations had a significant effect by increasing Myrothecium leaf spots on spinach. The biosynthesis of verrucarin A was significantly increased at the highest temperature (35 °C), while roridin E was influenced by the CO2 concentration. These results show that a positive correlation between climate condition and macrocyclic trichothecene production is possible. However, because of the ability of M. verrucaria to produce mycotoxins, an increase in temperature could induce the spread of M. verrucaria in temperate regions; this pathogen may gain importance in the future.  相似文献   

13.
Three crops of Agaricus bisporus were grown on non-composted substrate (NCS), spent mushroom compost (SMC), a 50/50 mixture of NSC/SMC, or pasteurized Phase II compost. NCS consisted of oak sawdust (28% oven dry wt), millet (29%), rye (8%), peat (8%), ground alfalfa (4%), ground soybean (4%), wheat bran (9%) and CaCO3 (10%). Substrates were non-supplemented or supplemented with Target® (a commercial delayed release nutrient for mushroom culture) or soybean meal at spawning or casing, or with Micromax® (a mixture of nine micronutrients) at spawning. Mushroom yield (27.2 kg/m2) was greatest on a 50/50 mixture of NCS/SMC supplemented with 10% (dry wt) Target® at casing. The same substrate supplemented with Target® at spawning yielded 20.1 kg/m2. By comparison, mushroom yield on Phase II compost supplemented at casing or at spawning with Target® was 21.6 kg/m2 and 20.6 kg/m2, respectively. On NCS amended with 0.74% or 0.9% Micromax® at spawning, yields increased by 51.8% (12.9 kg/m2) and 71.8% (14.6 kg/m2), respectively, over non-amended NCS (8.5 kg/m2). Conversely, mushroom yields were not affected when Micromax® was added to a 50/50 mixture of NCS/SMC. Mushroom solids content was higher in mushrooms harvested from NCS amended with 0.74% Micromax® (9.6%) compared to non-amended NCS (8.3%).  相似文献   

14.
A swim-bed reactor for partial nitritation with polymeric coagulant treatment and an UASB reactor for anammox were applied to the treatment of livestock manure digester liquor. The partial nitritation was maintained for 32 days under a 1.6 kg N/m3/d nitrogen loading rate (NLR) with an average conversion efficiency of 51%, and achieved 1.65 kg N/m3/d of the maximum nitrite production rate under 2.58 kg N/m3/d of NLR. Although 200 mg/L of TOC remained in the effluent of the partial nitritation reactor, the anammox nitrogen removal rate was not significantly decreased and a relatively high rate of 2.0 kg N/m3/d was obtained under a NLR of 2.2 kg N/m3/d. 16S rRNA gene analysis showed that Nitrosomonas and KSU-1 were dominant in the partial nitritation and anammox reactor, respectively. The results of this study demonstrated that the partial nitritation-anammox process has possibility of applying to the nitrogen removal of livestock manure digester liquor.  相似文献   

15.
In order to achieve recognition as environmentally friendly production, flue gases should be used as a CO2 source for growing the microalgae Chlorella sorokiniana when used for hydrogen production. Flue gases from a waste incinerator and from a silicomanganese smelter were used. Before testing the flue gases, the algae were grown in a laboratory at 0.04, 1.3, 5.9, and 11.0 % (v/v) pure CO2 gas mixed with fresh air. After 5 days of growth, the dry biomass per liter algal culture reached its maximum at 6.1 % CO2. A second experiment was conducted in the laboratory at 6.2 % CO2 at photon flux densities (PFD) of 100, 230, and 320 μmol photons m?2 s?1. After 4 days of growth, increasing the PFD increased the biomass production by 67 and 108 % at the two highest PFD levels, as compared with the lowest PFD. A bioreactor system containing nine daylight-exposed tubes and nine artificial light-exposed tubes was installed on the roof of the waste incinerator. The effect of undiluted flue gas (10.7 % CO2, 35.8 ppm NO x , and 38.6 ppm SO2), flue gas diluted with fresh air to give 4.2 % CO2 concentration, and 5.0 % pure CO2 gas was studied in daylight (21.4?±?9.6 mol photons m?2 day?1 PAR, day length 12.0 h) and at 135 μmol photons m?2 s?1 artificial light given 24 h day?1 (11.7?±?0.0 mol photons m?2 day?1 PAR). After 4 days’ growth, the biomass production was the same in the two flue gas concentrations and the 5 % pure CO2 gas control. The biomass production was also the same in daylight and artificial light, which meant that, in artificial light, the light use efficiency was about twice that of daylight. The starch concentration of the algae was unaffected by the light level and CO2 concentration in the laboratory experiments (2.5–4.0 % of the dry weight). The flue gas concentration had no effect on starch concentration, while the starch concentration increased from about 1.5 % to about 6.0 % when the light source changed from artificial light to daylight. The flue gas from the silicomanganese smelter was characterized by a high CO2 concentration (about 17 % v/v), low oxygen concentration (about 4 %), about 100 ppm NO x , and 1 ppm SO2. The biomass production using flue gas significantly increased as compared with about 5 % pure CO2 gas, which was similar to the biomass produced at a CO2 concentration of 10–20 % mixed with N2. Thus, the enhanced biomass production seemed to be related to the low oxygen concentration rather than to the very high CO2 concentration.  相似文献   

16.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

17.
The biocatalyzing effect of a novel cellulose acetate immobilized redox mediators technology (CE-RM) on nitrite denitrification process was studied with anthraquinone, 1,8-dichloroanthraquinone, 1,5-dichloroanthraquinone and 1,4,5,8-tetrachloroanthraquinone. The results showed that the immobilized 1,4,5,8-tetrachloroanthraquinone presented the best biocatalyzed effect which increased nitrite denitrification rate to 2.3-fold with 12 mmol/L 1,4,5,8-tetrachloroanthraquinone. The unequal biocatalyzing effect was due to the quantity and position of –Cl substituent in anthraquinone-structure. Moreover, the nitrite denitrification rate was increased with the oxidation reduction potential (ORP) values becoming more negative during the biocatalyzing process. The stabilized ORP value with 12 mmol/L immobilized 1,4,5,8-tetrachloroanthraquinone were 81 mV lower than the control. At the same time, the more OH? was produced with the higher nitrite removal rate achieved in the nitrite denitrification process. In addition, a positive linear correlation was found between the nitrite removal reaction constants k [gNO2 ?–N/(gVSS d)] and immobilized 1,4,5,8-tetrachloroanthraquinone concentration (C 1,4,5,8-tetrachloroanthraquinone), which was k = 1.8443 C 1,4,5,8-tetrachloroanthraquinone + 33.75(R 2 = 0.9411). The initial nitrite concentration of 179 mgNO2 ?–N/L resulted in the maximum nitrite removal rate, which was 6.526[gNO2 ?–N/(gVSS d)]. These results show that the application of cellulose acetate immobilized redox mediators (CE-RM) can be valuable for increasing nitrite denitrification rate.  相似文献   

18.
CO2 consumption by silicate weathering has exerted a major control on atmospheric CO2 over geologic time. In order to assess plant impact on this process, the study compared water geochemistry and CO2 consumption rates by silicate weathering in watersheds covered by bamboos and other forests. Our study showed that SiO2 concentrations (80?~?150 μmol/L, average 105 μmol/L) in water from pure bamboo forest watersheds were higher than that (15?~?85 μmol/L, average 60 μmol/L) from other watersheds. Si/(Nasilicate?+?Ksilicate) ratios in water draining from bamboo watersheds (2.0?~?4.0, average 2.9) were higher than that from other watersheds ?>(0.7?~?2.7, average 2.2). CO2 consumption rates by silicate weathering in bamboo watersheds (1.8?~?3.4 105 mol/km2/yr, average 2.5 105 mol/km2/yr) were higher than that in other watersheds (1.5?~?2.6 105 mol/km2/yr, average 2.0 105 mol/km2/yr). Therefore, bamboo-enhanced silicate weathering is a potential biogeochemical remediation approach for atmospheric CO2.  相似文献   

19.
In this study, we developed a novel technique for preparing polyvinyl alcohol (PVA) hydrogel as an immobilizing matrix by the addition of sodium bicarbonate. This resulted in an increase in the specific surface area of PVA_sodium bicarbonate (PVA_SB) hydrogel beads to 65.23 m2 g?1 hydrogel beads, which was approximately 85 and 14 % higher than those of normal PVA and PVA_sodium alginate (PVA_SA) hydrogel beads, respectively. The D e value of PVA_SB hydrogel beads was calculated as 7.49 × 10?4 cm2 s?1, which was similar to the D e of PVA_SA hydrogel beads but nearly 38 % higher than that of the normal PVA hydrogel beads. After immobilization with nitrifying biomass, the oxygen uptake rate and the ammonium oxidation rate of nitrifying biomass entrapped in PVA_SB hydrogel beads were determined to be 19.53 mg O2 g MLVSS?1 h?1 and 10.59 mg N g MLVSS?1 h?1, which were 49 and 43 % higher than those of normal PVA hydrogel beads, respectively. Scanning electron microscopy observation of the PVA_SB hydrogel beads demonstrated relatively higher specific surface area and revealed loose microstructure that was considered to provide large spaces for microbial growth. This kind of structure was also considered beneficial for reducing mass transfer resistance and increasing pollutant uptake.  相似文献   

20.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号