首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given that 29% of seabird species are threatened with extinction, protecting seabird colonies on offshore islands is a global conservation priority. Seabirds are vulnerable to non‐native predator invasions, which reduce or eliminate colonies. Accordingly, conservation efforts have focused on predator eradication. However, affected populations are often left to passively recover following eradications. Although seabirds are highly mobile, their life history traits such as philopatry can limit passive recolonization of newly predator‐free habitat. In such cases, seabird colonies can potentially be re‐instated with active restoration via chick translocations or social attraction methods, which can be risky and expensive. We used biogeographic and species‐specific behavioral data in the Hauraki Gulf, New Zealand, a global hotspot of seabird diversity and predator eradications, to illustrate the use of geographic information systems multi‐criteria decision analysis to prioritize islands for active seabird restoration. We identified nine islands with low observed passive recovery of seabirds posteradication over a 50‐year timeframe, and classified these as sites where active seabird management could be prioritized. Such spatially explicit tools are flexible, allowing for managers to choose case‐specific criteria such as time, funding, and goals constrained for their conservation needs. Furthermore, this flexibility can also be applied to threatened species management by customizing the decision criteria for individual species' capacity to passively recolonize islands. On islands with complex restoration challenges, decision tools that help island restoration practitioners decide whether active seabird management should be paired with eradication can optimize restoration outcomes and ecosystem recovery.  相似文献   

2.
Colonial nesting seabirds frequently drive island ecosystem biodiversity by maintaining ecosystem functioning and community dynamics. Invasive mammal introductions to most of the world’s islands have ravaged insular seabird populations and had associated devastating ecosystem-wide effects. Eradication programs remove invasive mammals from islands, with the goal of conserving and restoring island species and systems. However, most eradication programs rely almost exclusively on passive seabird recovery to achieve these goals. Unfortunately, the life histories of most seabird species are not conducive to passive recovery within a contemporary timeframe. Seabird restoration techniques can effectively overcome life history related issues and significantly reduce recovery times for insular seabird populations, thereby reducing associated ecosystem-wide recovery times. By integrating seabird restoration and eradication programs, practitioners can maximize conservation gains, expand funding opportunities, and restore island ecosystems and the biodiversity they support.  相似文献   

3.
Understanding how insular ecosystems recover or are restructured after the eradication of an invasive species is crucial in evaluating conservation success and prioritizing island conservation efforts. Globally, herbivores have been removed from 762 islands, most with limited active restoration actions following eradication. Few studies have documented the effects of invasive herbivore removal after multiple decades of passive recovery. Here we evaluate recovery of vegetation on Santa Cruz Island, California, after the removal of feral sheep (Ovis aries) in 1984. We repeat a study conducted in 1980, and examine vegetation changes 28 years after the eradication. Before eradication, grazed areas were characterized by reduced plant cover, high exposure of bare ground, and erosion. After 28 years of passive recovery, transect data showed a 23% increase in woody overstory, whereas analysis of photographs from landscapes photographed pre‐ and post‐eradication showed a 26% increase in woody vegetation. Whole island vegetation maps similarly showed a transition from grass/bare ground (74.3% of cover) to woody plants (77.2% of cover), indicating the transition away from predominantly exotic annual grassland toward a community similar to the overstory of coastal scrubland but with an understory dominated by non‐native annual grasses. We estimate that replacement of grasses/bare ground by native woody vegetation has led to 70 and 17% increases in the stored carbon and nitrogen pools on the island, respectively. Our results demonstrate that these island ecosystems can experience significant recovery of native floral communities without intensive post‐eradication restoration, and results of recovery may take decades to be realized.  相似文献   

4.
Measuring restoration outcomes is essential, but challenging and expensive, particularly on remote islands. Acoustic recording increases the scale of monitoring inexpensively; however, extracting biological information from large volumes of recordings remains challenging. Soundscape approaches, characterizing communities using acoustic indices, rapidly analyze large acoustic datasets and can be used to compare restoration sites against reference conditions. We tested this approach to measure nocturnal seabird recovery following invasive predator removal in the Aleutian Islands. We used recordings of nocturnal seabird soundscapes from six islands with varied histories of predators, from never invaded (one island) to 9–34 years post‐predator removal (four islands) and currently invaded (one island). We calculated 10 indices of acoustic intensity and complexity, and two pairwise indices of acoustic differences. Three indices reflected patterns of seabird recovery. Acoustic richness (measuring temporal entropy and amplitude) increased with time since predator removal and presence of historical predator refugia (r2 = 0.44). These factors and moonlight accounted for 30% of variation in cumulative spectral difference from the reference island. Over 10% of acoustic richness and temporal entropy was explained by Leach's Storm‐petrel (Oceanodroma leucorhoa) calls. However, indices characterized the soundscape of rat‐invaded Kiska Island like a never invaded island, likely due to high abiotic noise and few seabird calls. Soundscape indices have potential to monitor outcomes of seabird restoration quickly and cheaply, if confounding factors are considered and controlled in experimental design. We suggest soundscape indices become part of the expanding acoustic monitoring toolbox to cost‐effectively measure restoration outcomes at scale and in remote areas.  相似文献   

5.
Within the past several decades, seabird populations have been actively restored in locales where they were reduced or extirpated. Chick translocation, acoustic vocalization playbacks, and decoys are now used widely to lure breeding seabirds to restoration sites. In this first worldwide review of seabird restoration projects we evaluate the factors affecting project success or failure and recommend future directions for management. We identified 128 active restoration projects that were implemented to protect 47 seabird species in 100 locales spanning 14 countries since active restoration methods were pioneered in 1973. Active seabird restoration can achieve conservation goals for threatened and endangered species, and for species affected by anthropogenic impacts (e.g., oil spills, invasive species, fisheries). It also can be used to relocate populations from undesired breeding locales to more favorable locations, and to establish multiple breeding locations to reduce risks posed by catastrophic events. Active restoration can help to restore ecological processes, as large seabird colonies function to cycle marine nutrients to terrestrial ecosystems and create habitats for commensal species. Active restoration is especially appropriate where the original causes of decline are no longer working to suppress colony establishment and growth. Successful restoration efforts require careful planning and long-term commitments. We introduce the different forms of active seabird restoration techniques, review their utility for different seabird species, and use case studies to suggest how to optimize this technique to restore seabird species globally. Wildlife managers can use this review to guide their seabird restoration projects in the planning, implementation, and monitoring stages; tailor their restoration to seabird-specific life histories; and identify areas for further research to improve restoration utility in the future. © 2011 The Wildlife Society.  相似文献   

6.
Islands exhibit disproportionally high biodiversity, however high levels of endemism and simplified food webs make their communities susceptible to invasive species. Introduced goats (Capra hircus), a generalist herbivore, are among the most harmful invasive species on islands. Concern about goat impacts on island communities have resulted in eradication programs, which have been generally implemented without comprehensive evaluation and monitoring. Unintended consequences may follow eradication, as grazing can have complex effects on island food webs. Using whole island manipulations, we evaluate the long-term, community-wide effects of goat herbivory, as well as their subsequent removal, in a system of 16 islands in the Aegean Sea (Greece) located within the Mediterranean biodiversity hotspot. Goat grazing on these islands is a major conservation concern, as these support endemic plant communities that have evolved in low herbivory conditions and lack appropriate defenses. We show that goat introductions lead to significant decreases in vegetation height, percent cover, and biomass but not to immediate plant species loss, as native island endemics are replaced with widespread generalist taxa carried in by the livestock. Additionally, goats contribute to the desertification of islands by initiating a long-term soil loss cycle that continues even after goats are removed; however, remaining soil structure and chemistry are not affected. Island arthropod populations do not appear to be significantly impacted by goat introduction or removal, except for a distinct increase in the order Diptera with goat presence. This study also reaffirms the role of seabirds in providing important marine subsidies, rich in nitrogen and phosphorus, to island food webs. Plant species diversity declines following goat removal, and vegetation cover returns only partially, as further recovery is being prevented by the long-term loss of soil. This suggests that following goat removal, island communities may require additional restoration efforts, including seabird reestablishment and reintroduction of extirpated plant populations, to promote island recovery.  相似文献   

7.
For effective and efficient pest management it is essential to understand the ecology of the target species and recipient ecosystems. The use of rodent eradication as a restoration tool is well established in temperate regions, but less common in the tropics, presenting an opportunity to undertake scientific learning in tandem with rodent eradications. On a dry tropical archipelago, we used a Before-After-Control-Impact framework to document (1) fluctuations in the abundance and demography of invasive Rattus rattus and Mus musculus on three different islands, (2) the trophic niche of all three invasive rodent populations, and (3) changes in the invertebrate community before and after rodent eradication, also comparing with two rodent free islands. While rat density was high and relatively stable throughout the year, the two mouse populations greatly differed in body size and seasonal dynamics, despite their proximity. The rodents in all three populations were generalist and opportunistic feeders, although stable isotope analyses results indicated major differences among them, driven by food availability and rodent species. Seasonal fluctuations in invertebrate communities depended on rodent invasion status, but recovery in the invertebrate communities one year after rodent removal was limited for all islands. Predictions for other tropical ecosystem biomes require long-term research on more tropical islands. Improving our understanding of island and species-specific contexts of rodent eradications can advance island restoration projects and assist the selection of indicator species for ecosystem recovery.  相似文献   

8.
The white-chinned petrel is a subantarctic seabird that requires urgent implementation of conservation measures for the species. At sea, adults suffer heavy mortality due to fisheries' practices. On land, introduced rats prey on chicks at several localities, and we test here if and how rats can be efficiently controlled. Since 1994, we have conducted an intensive rat-control program during each breeding season in a white-chinned petrel colony on Ile de la Possession (150 km2; Crozet archipelago, southern Indian Ocean), which had been monitored since 1986. On the same island, a control white-chinned petrel colony, where no poisoning occurred, was also monitored, and we assessed the seasonal variations of rat abundance. We compared three situations: high rat-poisoning, low rat-poisoning and control conditions without poisoning. Low-poisoning trials performed in our experimental colony between 1988 and 1991 did not lead to higher chick production than for the previous two control years. However, petrel-breeding success was significantly higher when intensive poisoning occurred (50%) than for the previous years (16%). The duration of our study (8 years before intensive poisoning, plus 8 years afterwards), combined with a comparison of petrel annual breeding success between our experimental and control colonies, allowed us to assess more effectively the impact of rats. Forty-one per cent of breeding failures occurring in non-poisoned areas were attributed to rats. We conclude that threatened insular bird populations can be conserved and restored in localities even where total rat eradication is not possible. However, only intensive and repeated (long-term) poisoning will control rats sufficiently.  相似文献   

9.
Summary The establishment of exotic species of vascular flora and vertebrate fauna on subantarctic Macquarie Island since its discovery in 1810 has resulted in major changes in the biota. A management programme aims to reduce the numbers of exotic plant and animal species and assist with the recovery of pre-existing communities and processes. This paper reviews the integrated vertebrate pests management programme on Macquarie Island since 1974 and outlines future management considerations. As part of this programme, the responses of some native and exotic species of vascular flora and vertebrate fauna were monitored following control of European Rabbit ( Oryctolagus cuniculus ) numbers. Changes in the vegetation recorded over 10 years showed that approximately half of all the vascular species had benefited from rabbit grazing, including several which formed a major part of the rabbit's diet. After rabbit control, some adversely affected plants responded rapidly to a reduction in grazing pressure while others will require an almost total cessation of grazing in order to re-establish their former distributions. With the decrease in rabbit numbers it was also necessary to control Feral Cats ( Felis catus ) due to their increased predation on native burrow-nesting birds. Feral Cat predation on introduced fauna also increased, one result of which was the eradication from the island of the introduced Weka ( Gallirallus australis scotti ). Reduced rabbit grazing is leading to re-establishment of the native Tall Tussock ( Poa foliosa ) grassland and with it the spread of the introduced Ship Rat ( Rattus rattus ). This review indicates that an integrated approach to pest management, with monitoring of the responses of both target and non-target species, is the most effective way to restore pre-existing communities and processes.
Key words grazing pressure, introduced species, predation, recovery, vertebrate pest management.  相似文献   

10.
More than 18 million seabirds nest on 58 Pacific islands protected within vast U.S. Marine National Monuments (1.9 million km2). However, most of these seabird colonies are on low-elevation islands and sea-level rise (SLR) and accompanying high-water perturbations are predicted to escalate with climate change. To understand how SLR may impact protected islands and insular biodiversity, we modeled inundation and wave-driven flooding of a globally important seabird rookery in the subtropical Pacific. We acquired new high-resolution Digital Elevation Models (DEMs) and used the Delft3D wave model and ArcGIS to model wave heights and inundation for a range of SLR scenarios (+0.5, +1.0, +1.5, and +2.0 m) at Midway Atoll. Next, we classified vegetation to delineate habitat exposure to inundation and identified how breeding phenology, colony synchrony, and life history traits affect species-specific sensitivity. We identified 3 of 13 species as highly vulnerable to SLR in the Hawaiian Islands and quantified their atoll-wide distribution (Laysan albatross, Phoebastria immutabilis; black-footed albatross, P. nigripes; and Bonin petrel, Pterodroma hypoleuca). Our models of wave-driven flooding forecast nest losses up to 10% greater than passive inundation models at +1.0 m SLR. At projections of + 2.0 m SLR, approximately 60% of albatross and 44% of Bonin petrel nests were overwashed displacing more than 616,400 breeding albatrosses and petrels. Habitat loss due to passive SLR may decrease the carrying capacity of some islands to support seabird colonies, while sudden high-water events directly reduce survival and reproduction. This is the first study to simulate wave-driven flooding and the combined impacts of SLR, groundwater rise, and storm waves on seabird colonies. Our results highlight the need for early climate change planning and restoration of higher elevation seabird refugia to prevent low-lying protected islands from becoming ecological traps in the face of rising sea levels.  相似文献   

11.
Invasive rats have colonized most of the islands of the world, resulting in strong negative impacts on native biodiversity and on ecosystem functions. As prolific omnivores, invasive rats can cause local extirpation of a wide range of native species, with cascading consequences that can reshape communities and ecosystems. Eradication of rats on islands is now becoming a widespread approach to restore ecosystems, and many native island species show strong numerical responses to rat eradication. However, the effect of rat eradication on other consumers can extend beyond direct numerical effects, to changes in behavior, dietary composition, and other ecological parameters. These behavioral and trophic effects may have strong cascading impacts on the ecology of restored ecosystems, but they have rarely been examined. In this study, we explore how rat eradication has affected the trophic ecology of native land crab communities. Using stable isotope analysis of rats and crabs, we demonstrate that the diet or trophic position of most crabs changed subsequent to rat eradication. Combined with the numerical recovery of two carnivorous land crab species (Geograpsus spp.), this led to a dramatic widening of the crab trophic niche following rat eradication. Given the established importance of land crabs in structuring island communities, particularly plants, this suggests an unappreciated mechanism by which rat eradication may alter island ecology. This study also demonstrates the potential for stable isotope analysis as a complementary monitoring tool to traditional techniques, with the potential to provide more nuanced assessments of the community‐ and ecosystem‐wide effects of restoration.  相似文献   

12.
Abstract

Over the last four decades the eradication of rats from islands around New Zealand has moved from accidental eradication following the exploratory use of baits for rat control to carefully planned complex eradications of rats and cats (Felis catus) on large islands. Introduced rodents have now been eradicated from more than 90 islands. Of these successful campaigns, those on Breaksea Island, the Mercury Islands, Kapiti Island, and Tuhua Island are used here as case studies because they represent milestones for techniques used or results achieved. Successful methods used on islands range from bait stations and silos serviced on foot to aerial spread by helicopters using satellite navigation systems. The development of these methods has benefited from adaptive management. By applying lessons learned from previous operations the size, complexity, and cost effectiveness of the campaigns has gradually increased. The islands now permanently cleared of introduced rodents are being used for restoration of island‐seabird systems and recovery of threatened species such as large flightless invertebrates, lizards, tuatara, forest birds, and some species of plants. The most ambitious campaigns have been on remote subantarctic Campbell Island (11 300 ha) and warm temperate Raoul Island (2938 ha), aimed to provide long‐term benefits for endemic plant and animal species including land and seabirds. Other islands that could benefit from rat removal are close inshore and within the natural dispersal range of rats and stoats (Mustela erminea). Priorities for future development therefore include more effective methods for detecting rodent invasions, especially ship rats (Rattus rattus) and mice (Mus musculus), broader community involvement in invasion prevention, and improved understanding of reinvasion risk management.  相似文献   

13.
The white-chinned petrel (Procellaria aequinoctialis) is a seabird widely distributed in the circumpolar sub-Antarctic islands and subtropical regions, including Brazilian waters. Among the parasites present on the white-chinned petrel are the chewing lice. This seabird is parasitized by 4 known lice species to date. In this study we evaluated the ectoparasites of 2 white-chinned petrels rescued by an animal rehabilitation center in Rio de Janeiro, Brazil and recorded 4 species of chewing lice, of which 3 are already known for this host. One of the species however, has never been recorded in Brazil and another one has never been recorded parasitizing P. aequinoctialis, making this a new host record.  相似文献   

14.
Canopy‐forming algae play a key role in temperate coastal ecosystems sustaining complex habitats that provide food and refuge for rich associated biotic communities. These macroalgae are in decline in many coastal areas, where overgrazing by herbivores can lead to the loss of these highly structured and diverse habitats toward less complex sea urchin barren grounds. Once established, low productive barren grounds are considered stable states maintained by several positive feedback mechanisms that prevent the recovery of marine forests. To revert this global decline, restoration efforts and measures are being encouraged by EU regulations and local actions. Here, we tested the success of active revegetation techniques as a tool to promote functional and productive Treptacantha elegans forests in sea urchin barren grounds under different restoration strategies (active, and combined active with passive strategies). Active revegetation was performed in 6 barren grounds, 3 located inside a Mediterranean No‐Take marine reserve (active and passive strategy) and 3 outside (active strategy alone), following a three‐step protocol: (1) sea urchin population eradication, (2) seeding with Treptacantha elegans, and (3) enhancement of T. elegans recruitment. Revegetation success was assessed 1 year later in the six barren grounds, but was only achieved after combining active with passive restoration strategies. Our results encourage revegetation of barren grounds to shift from less productive habitats to complex T. elegans forests, highlight the potential of the combined passive and active restoration strategies, as well as the important role of marine reserves not only in conservation but also in ecological restoration.  相似文献   

15.
Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at‐sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red‐footed booby, brown noddy, white tern, and wedge‐tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red‐footed booby and wedge‐tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red‐footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat‐free and rat‐invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use‐age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red‐footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.  相似文献   

16.
Introduced rabbits have severely impacted the terrestrial ecosystem of sub‐Antarctic Macquarie Island. Here we describe first observations of rapid recovery of an important plant species following the commencement of a vertebrate pest eradication plan. The tussock grass Poa foliosa, a major component of the Macquarie Island landscape, has been severely impacted by rabbit grazing with large‐scale reductions in cover across the island observed at times over the last 50 years. Preliminary aerial baiting for rabbits and rodents commenced in winter 2010, and within 6 months, we observed substantial regrowth of tussock grass. The rapid re‐emergence of this grass over such a short time period following localised removal of rabbits has positive implications for the island’s recovery and provides insight for restoration monitoring.  相似文献   

17.
Invasive rodent eradications are frequently undertaken to curb island biodiversity loss. However, the breadth of rodents’ ecological impact, even after eradication, is not always fully recognized. For example, the most widespread invasive rodent, the black rat (Rattus rattus), while omnivorous, eats predominantly seeds and fruit. Yet, the effects of seed predation release after eradication on plant communities and ecological functions are not well understood, posing a gap for island restoration. We examined the role of seed predation release following black rat eradication in changes to tree composition and aboveground biomass across an islet network (Palmyra Atoll) in the Central Pacific. We conducted repeated surveys of seed, juvenile, and adult tree biomass and survival in permanent vegetation plots before and after the eradication of rats. We observed a 95% reduction in seed predation for an introduced, previously cultivated tree population (Cocos nucifera). Juvenile tree biomass of all species increased 14‐fold, with C. nucifera increasing the most, suggesting that eradication increased this tree's competitive advantage. Indeed, based on stage‐structured demographic models, rat eradication led to a 10% increase in C. nucifera population growth rate. The effect of invasive rodent seed predation varies considerably among the plant species in a community and can shift competitive dynamics, sometimes in favor of invasive plants. These bottom‐up effects should be considered in evaluating the costs and benefits of eradication. Documenting the variation in invasive rodent diet items, along with long‐term surveys, can help prioritize island eradications where restoration is most likely to be successful.  相似文献   

18.
Guadalupe is an oceanic island located in the Pacific Ocean off Mexico's northwest coast. Its flora is composed of many plant species with more northern affinities and disjunctions from the California Floristic Province. Almost 16% of the native plant species are endemic, including two monospecific genera. However, the activities of feral goats released in the early 19th century have devastated most of the island. At present, at least 26 native plant species have disappeared from Guadalupe and many more seem to be on the threshold. To add to the problem, 61 exotic plant species have been documented on the island, many of which are aggressive weeds. In this paper, we propose eight types of environmental conditions for the island where different species assemblages of the pristine flora probably existed before their demise. It is of obvious urgency that the island needs a recovery plan and the first step should include the eradication of the feral goats. Only after this process can subsequent conservation measures be applied to ensure any restoration of this natural heritage. The recovery plan will need to address both spontaneous and human-induced plant repopulation processes from the main island's three southern islets, which have never been impacted by goats. Also, it may be necessary to reintroduce non-endemic, native plant taxa from the nearest Californian islands and the Mexican coast in order to reestablish some of the island's original diversity of plant species and communities. However, it should be noted that the forested communities do not have great hopes of recovering in the short term, since the ground water and soil conditions have been significantly altered. Furthermore, the eradication of an estimated 4000 goats still living on the island (year 2000) depends upon the vacillating motivation and will of Mexican authorities.  相似文献   

19.
The global decline of biodiversity makes it important to find affordable ways to conserve and restore habitats. Restoration is useful for conserving native grasslands, with passive restoration defined as either natural colonization or unassisted recovery. Grasslands in southeastern South America have been transformed into croplands and impacted by other human activities. We describe the first assessment of passive restoration as a management tool to conserve birds in the Pampa grasslands of Brazil. We compared bird species richness using coverage‐based rarefaction and extrapolation, applying PERMANOVA for composition, and the abundance of bird communities between sites undergoing passive restoration (PR) and sites with native grasslands (NG). We employed fitted generalized linear mixed models (GLMM) to quantify relationships between bird occurrence and vegetation structure and cover. We recorded 61 species of birds during our study (45 in PR and 46 in NG) and 762 individuals (333 in PR and 429 in NG). Of these species, 15 were restricted to PR and 16 to NG. Grassland specialists and threatened species were found in both PR and NG, and only vegetation height differed between PR and NG. We detected eight species of conservation concern, including three recorded only in PR, three only in NG, and two in both PR and NG. The absence of marked differences in species richness and composition of bird communities between passive‐restoration and native grasslands in our study suggests that grasslands in the process of passive restoration can provide habitat for many species of grassland birds and that passive restoration is an appropriate management tool for biodiversity conservation in Brazilian grasslands.  相似文献   

20.
Given the major ongoing influence of environmental change on the oceans, there is a need to understand and predict the future distributions of marine species in order to plan appropriate mitigation to conserve vulnerable species and ecosystems. In this study we use tracking data from seven large seabird species of the Southern Ocean (black‐browed albatross Thalassarche melanophris, grey‐headed albatross T. chrysostoma, northern giant petrel Macronectes halli, southern giant petrel M. giganteus, Tristan albatross Diomedea dabbenena, wandering albatross D. exulans and white‐chinned petrel Procellaria aequinoctialis, and on fishing effort in two types of fisheries (characterised by low or high‐bycatch rates), to model the associations with environmental variables (bathymetry, chlorophyll‐a concentration, sea surface temperature and wind speed) through ensemble species distribution models. We then projected these distributions according to four climate change scenarios built by the Intergovernmental Panel for Climate Change for 2050 and 2100. The resulting projections were consistent across scenarios, indicating that there is a strong likelihood of poleward shifts in distribution of seabirds, and several range contractions (resulting from a shift in the northern, but no change in the southern limit of the range in four species). Current trends for southerly shifts in fisheries distributions are also set to continue under these climate change scenarios at least until 2100; some of these may reflect habitat loss for target species that are already over‐fished. It is of particular concern that a shift in the distribution of several highly threatened seabird species would increase their overlap with fisheries where there is a high‐bycatch risk. Under such scenarios, the associated shifts in distribution of seabirds and increases in bycatch risk will require much‐improved fisheries management in these sensitive areas to minimise impacts on populations in decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号