首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A white-wine grape, Pinot Blanc, is thought to be a white-skinned mutant of a red-wine grape, Pinot Noir. Pinot Noir was heterozygous for VvmybA1. One allele was the non-functional VvmybA1a, and the other was the functional VvmybA1c. In Pinot Blanc, however, only VvmybA1a was observed, and the amount of VvmybA1 DNA in Pinot Blanc was half that in Pinot Noir. These findings suggest that deletion of VvmybA1c from Pinot Noir resulted in Pinot Blanc.  相似文献   

2.
The ripening of grape (Vitis vinifera L.) is characterized by massive sugar import into the berries. The events triggering this process and the pathways of assimilate transport are still poorly known. A genomic clone Vvht1 (Vitis vinifera hexose transporter1) and the corresponding cDNA encoding a hexose transporter whose expression is induced during berry ripening have been isolated. Vvht1 is expressed mainly in the berries, with a first peak of expression at anthesis, and a second peak about 5 weeks after véraison (a viniculture term for the inception of ripening). Vvht is strictly conserved between two grape cultivars (Pinot Noir and Ugni-Blanc). The organization of the Vvht1 genomic sequence is homologous to that of the Arabidopsis hexose transporter, but differs strongly from that of the Chlorella kessleri hexose transporter genes. The Vvht1 promoter sequence contains several potential regulating cis elements, including ethylene-, abscisic acid-, and sugar-responsive boxes. Comparison of the Vvht1 promoter with the promoter of grape alcohol dehydrogenase, which is expressed at the same time during ripening, also allowed the identification of a 15-bp consensus sequence, which suggests a possible co-regulation of the expression of these genes. The expression of Vvht1 during ripening indicates that sucrose is at least partially cleaved before uptake into the flesh cells.  相似文献   

3.
A white-wine grape, Pinot Blanc, is thought to be a white-skinned mutant of a red-wine grape, Pinot Noir. Pinot Noir was heterozygous for VvmybA1. One allele was the non-functional VvmybA1a, and the other was the functional VvmybA1c. In Pinot Blanc, however, only VvmybA1a was observed, and the amount of VvmybA1 DNA in Pinot Blanc was half that in Pinot Noir. These findings suggest that deletion of VvmybA1c from Pinot Noir resulted in Pinot Blanc.  相似文献   

4.
A new approach to sequencing and assembling a highly heterozygous genome, that of grape, species Vitis vinifera cv Pinot Noir, is described. The combining of genome shotgun of paired reads produced by Sanger sequencing and sequencing by synthesis of unpaired reads was shown to be an efficient procedure for decoding a complex genome. About 2 million SNPs and more than a million heterozygous gaps have been identified in the 500Mb genome of grape. More than 91% of the sequence assembled into 58,611 contigs is now anchored to the 19 linkage groups of V. vinifera.  相似文献   

5.
Commercial polysaccharase preparations are applied to winemaking to improve wine processing and quality. Expression of polysaccharase-encoding genes in Saccharomyces cerevisiae allows for the recombinant strains to degrade polysaccharides that traditional commercial yeast strains cannot. In this study, we constructed recombinant wine yeast strains that were able to degrade the problem-causing grape polysaccharides, glucan and xylan, by separately integrating the Trichoderma reesei XYN2 xylanase gene construct and the Butyrivibrio fibrisolvens END1 glucanase gene cassette into the genome of the commercial wine yeast strain S. cerevisiae VIN13. These genes were also combined in S. cerevisiae VIN13 under the control of different promoters. The strains that were constructed were compared under winemaking conditions with each other and with a recombinant wine yeast strain expressing the endo-beta-1,4-glucanase gene cassette (END1) from B. fibrisolvens and the endo-beta-1,4-xylanase gene cassette (XYN4) from Aspergillus niger, a recombinant strain expressing the pectate lyase gene cassette (PEL5) from Erwinia chrysanthemi and the polygalacturonase-encoding gene cassette (PEH1) from Erwinia carotovora. Wine was made with the recombinant strains using different grape cultivars. Fermentations with the recombinant VIN13 strains resulted in significant increases in free-flow wine when Ruby Cabernet must was fermented. After 6 months of bottle ageing significant differences in colour intensity and colour stability could be detected in Pinot Noir and Ruby Cabernet wines fermented with different recombinant strains. After this period the volatile composition of Muscat d'Alexandria, Ruby Cabernet and Pinot Noir wines fermented with different recombinant strains also showed significant differences. The Pinot Noir wines were also sensorial evaluated and the tasting panel preferred the wines fermented with the recombinant strains.  相似文献   

6.
Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components, such as sugars, acids, flavours, anthocyanins, tannins, etc., are accumulated during the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance the understanding of the berry development and ripening processes. Here, the developmental analysis of V. vinifera cv. Muscat Hamburg berries is reported at protein level, from fruit set to full ripening. A top-down proteomic approach based on differential in-gel electrophoresis (DIGE) followed by tandem mass spectrometry led to identification and quantification of 156 and 61 differentially expressed proteins in green and ripening phases, respectively. Two key points in development, with respect to changes in protein level, were detected: end of green development and beginning of ripening. The profiles of carbohydrate metabolism enzymes were consistent with a net conversion of sucrose to malate during green development. Pyrophosphate-dependent phosphofructokinase is likely to play a key role to allow an unrestricted carbon flow. The well-known change of imported sucrose fate at the beginning of ripening from accumulation of organic acid (malate) to hexoses (glucose and fructose) was well correlated with a switch in abundance between sucrose synthase and soluble acid invertase. The role of the identified proteins is discussed in relation to their biological function, grape berry development, and to quality traits. Another DIGE experiment comparing fully ripe berries from two vintages showed very few spots changing, thus indicating that protein changes detected throughout development are specific.  相似文献   

7.
This study compares 11 commercial cultures of Leuconostoc oenos and Lactobacillus plantarum in Cabernet Sauvignon, Pinot Noir and Chardonnay wines. Performance of the cultures was found to be greatly influenced by wine type. Better survival of the bacteria was observed in Cabernet Sauvignon and Pinot Noir wines. The time necessary to complete malolactic fermentation (MLF) was 65 ± 14 d for Chardonnay, 71 ± 3 d for Cabernet Sauvignon, and 25 ± 8 d for Pinot Noir. The maximal rate of malate utilization was 0·4 g d-1 for Pinot Noir, and 0·2 g d-1 for the two other wine types. Final diacetyl concentration was lower in Chardonnay wines (highest 0·58 mg l-1) compared to the other wines (highest 5·8 mg l-1). Malic and citric acid were co-metabolized by all strains. None of the strains metabolized glycerol. Significant differences in final diacetyl concentration of wine vinified with the different strains were found. Panelists could reliably differentiate MLF wines from non-MLF wines, irrespective of their diacetyl content, indicating that diacetyl is not the only important MLF flavour.  相似文献   

8.
It is well known that post-bloom applications ofgibberellic acid (GA3) increase seedless grapeberry size by enhancing cell division, or cellenlargement, or both. As a consequence, total waterand sugar per berry are increased. Soluble invertaseis considered to be one of the key enzymes in theaccumulation of sugar in grape berries. To study apossible role of invertase in the GA3berry-sizing effect, different rates of post-bloomGA3 were applied to seedless grape cv. Sultanaand hexose concentration and invertase activity weremeasured. GA3 stimulated both parameters as earlyas 24 and 32 h after applications, respectively.Moreover, the increment in sugar content and enzymeactivity remained throughout the growing of the berries period and, at ripening, increases in hexosescontent (102%) and invertase activity (60%) weredetected when GA3 was applied at a rate of 45 ppm.At the same GA3 rate the pericarp cellsdoubled in size. Furthermore, positive correlationswere found between berry-size, invertase activity andhexose content, suggesting that GA3 stimulationof invertase could be one of the factors involved in theberry sizing-effect of GA3.  相似文献   

9.
10.
Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) (O Paz, HW Janes, BA Prevost, C Frenkel [1982] J Food Sci 47: 270-274) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied i-[U-14C]malic acid as the source for gluconeogenic carbon mobilization. The label from malate was recovered in respiratory CO2, in other organic acids, in ethanol insoluble material, and an appreciable amount in the ethanol soluble sugar fraction. In Rutgers tomatoes, the label recovery in the sugar fraction and an attendant label reduction in the organic acids fraction intensified with fruit ripening. In both Rutgers and in the nonripening tomato rin, these processes were markedly stimulated by 4000 ppm acetaldehyde. The onset of label apportioning from malic acids to sugars coincided with decreased levels of fructose-2,6-biphosphate, the gluconeogenesis inhibitor. In acetaldehyde-treated tissues, with enhanced label mobilization, this decline reached one-half to one third of the initial fructose-2,6-biphosphate levels. Application of 30 micromolar fructose-2,6-biphosphate or 2,5-anhydro-d-mannitol in turn led to a precipitous reduction in the label flow to sugars presumably due to inhibition of fructose-1,6-biphosphatase by the compounds. We conclude that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification.  相似文献   

11.
Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.  相似文献   

12.
葡萄枝条水分含量变化与抗寒性关系   总被引:3,自引:0,他引:3  
以12个葡萄品种1年生枝条为试材,通过0、-15、-18、-21、-24、-27、-30、-133℃8个低温处理24h后,测定不同低温胁迫下葡萄枝条的,6-含水量、束缚水含量、自由水含量和束缚水与自由水的比值。结果表明:随着处理温度的降低,同一品种枝条的总含水量基本恒定,自由水含量呈先下降再升高的趋势,束缚水含量和束缚水与自由水的比值均呈现为先升高再下降的趋势;束缚水与自由水的比值随低温胁迫的变化呈Cubic方程,不同品种束缚水与自由水的比值达到最高点的温度不同,‘双红’、‘北冰红’、‘左优红’的拐点温度在-25℃以下,‘775’、‘巨峰’的拐点温度在-20℃左右,‘雷司令’、‘黑比诺’、‘霞多丽’的拐点温度在-18℃左右,‘赤霞珠’、‘梅鹿特’、‘白比诺’、‘红地球’拐点温度在-16~17℃。对葡萄休眠枝条进行低温处理后,通过测定束缚水与自由水含水量变化鉴定葡萄品种的抗寒性是可行的。  相似文献   

13.
Fruits of tomato (Lycopersicon esculentum Mill.) cv. Rutgers and of a nearly isogenic stock containing the ripening inhibitor gene rin harvested at green (66% mature) and ripe (107% mature) stages were studied for the subcellular distribution of isoenzymes using isoelectric focusing. The enzymes studied were peroxidases, esterases, phosphatases, phosphorylase, malate dehydrogenases, and IAA oxidases. During ripening of normal fruit the activities in the supernatant fraction of all of these enzymes, except malate dehydrogenase, decreased. In the particulate fractions some enzymes decreased while others increased in activity. The rin gene inhibited only some of the changes which occurred during ripening of normal fruit. It is postulated that changes in the degree to which enzymes are bound to membranes comprise one of the mechanisms by which the activities of enzymes are controlled in tomato pericarp, and that these membranes remain intact during ripening.  相似文献   

14.
In both plants and animals, programmed cell death (PCD) is an indispensable process that removes redundant cells. In seedless grapes (Vitis vinifera), abnormal PCD in ovule cells and subsequent ovule abortion play key roles in stenospermocarpy. Metacaspase, a type of cysteine-dependent protease, plays an essential role in PCD. To reveal the characteristics of the metacaspase (MC) gene family and the relationship between metacaspases and the seedless trait, we identified the 6 V. vinifera metacaspases VvMC1VvMC6, from the grape genome, using BLASTN against the 9 known Arabidopsis metacaspases. We also obtained full-length cDNAs by RT-PCR. Each of the 6 grape metacaspases contains small (p10-like) and a large (p20-like) conserved structural domains. Phylogenetic analysis of 6 grape and 9 Arabidopsis metacaspases showed that all metacaspases could be grouped into two classes: Type I and Type II. Each phylogenetic branch shares a similar exon/intron structure. Furthermore, the putative promoters of the grape metacaspases contained cis-elements that are involved in grape endosperm development. Moreover, expression analysis of metacaspases using real-time quantitative PCR demonstrated that VvMC1 and VvMC2 were able to be detected in any tissue, and VvMC3, VvMC4, VvMC5 and VvMC6 exhibited tissue-specific expression. Lastly, in cv. Thompson seedless grapes VvMC1, VvMC3, and VvMC4 were significantly up-regulated at the 35 DAF during ovule development, roughly same stage as endosperm abortion. In addition, the expression trend of VvMC2 and VvMC5 was similar between cv. Pinot Noir and cv. Thompson grape ovule development and that of VvMC6 was sustained in a relatively low level except the expression of cv. Pinot Noir significantly up-regulated in 25 DAF. Our data provided new insights into PCD by identifying the grape metacaspase gene family and provide a useful reference for further functional analysis of metacaspases in grape.  相似文献   

15.
AIMS: The main objective of this study was to develop polysaccharide-degrading wine strains of Saccharomyces cerevisiae, which are able to improve aspects of wine processing and clarification, as well as colour extraction and stabilization during winemaking. METHODS AND RESULTS: Two yeast expression/secretion gene cassettes were constructed, namely (i) a pectinase gene cassette (pPPK) consisting of the endo-polygalacturonase gene (pelE) from Erwinia chrysanthemi and the pectate lyase gene (peh1) from Erwinia carotovora and (ii) a glucanase/xylanase gene cassette (pEXS) containing the endo-beta-1,4-glucanase gene (end1) from Butyrivibrio fibrisolvens and the endo-beta-1,4-xylanase gene (xynC) from Aspergillus niger. The commercial wine yeast strain, VIN13, was transformed separately with these two gene cassettes and checked for the production of pectinase, glucanase and xylanase activities. Pinot Noir, Cinsaut and Muscat d'Alexandria grape juices were fermented using the VIN13[pPPK] pectinase- and the VIN13[pEXS] glucanase/xylanase-producing transformants. Chemical analyses of the resultant wines indicated that (i) the pectinase-producing strain caused a decrease in the concentration of phenolic compounds in Pinot Noir whereas the glucanase/xylanase-producing strain caused an increase in phenolic compounds presumably because of the degradation of the grape skins; (ii) the glucanase/xylanase-producing strain caused a decrease in wine turbidity, especially in Pinot Noir wine, as well as a clear increase in colour intensity and (iii) in the Muscat d'Alexandria and Cinsaut wines, the differences between the control wines (fermented with the untransformed VIN3 strain) and the wines produced by the two transformed strains were less prominent showing that the effect of these polysaccharide-degrading enzymes is cultivar-dependent. CONCLUSIONS: The recombinant wine yeasts producing pectinase, glucanase and xylanase activities during the fermentation of Pinot Noir, Cinsaut and Muscat d'Alexandria grape juice altered the chemical composition of the resultant wines in a way that such yeasts could potentially be used to improve the clarity, colour intensity and stability and aroma of wine. SIGNIFICANCE AND IMPACT OF THE STUDY: Aspects of commercial-scale wine processing and clarification, colour extraction and stabilization, and aroma enhancement could potentially be improved by the use of polysaccharide-degrading wine yeasts without the addition of expensive commercial enzyme preparations. This offers the potential to further improve the price:quality ratio of wine according to consumer expectations.  相似文献   

16.
We have developed an integrated map from five elite cultivars of Vitis vinifera L.; Syrah, Pinot Noir, Grenache, Cabernet Sauvignon and Riesling which are parents of three segregating populations. A new source of markers, SNPs, identified in ESTs and unique BAC-end sequences was added to the available IGGP reference set of SSRs. The complete integrated map comprises 1,134 markers (350 AFLP((R)), 332 BESs, 169 ESTs, 283 SSRs) spanning 1,443 cM over 19 linkage groups and shows a mean distance between neighbouring loci of 1.27 cM. Marker order was mainly conserved between the integrated map and the highly dense Syrah x Pinot Noir consensus map except for few inversions. Moreover, the marker order has been validated through the assembled genome sequence of Pinot Noir. We have also assessed the transferability of SNP-based markers among five V. vinifera varieties, enabling marker validation across different genotypes. This integrated map can serve as a fundamental tool for molecular breeding in V. vinifera and related species and provide a basis for studies of genome organization and evolution in grapevines.  相似文献   

17.
Fruits of tomato, Lycopersicon esculentum Mill. cv Liberty, ripen slowly and have a prolonged keeping quality. Ethylene production and the levels of polyamines in pericarp of cv Liberty, Pik Red, and Rutgers were measured in relation to fruit development. Depending on the stage of fruit development, Liberty produced between 16 and 38% of the ethylene produced by Pik Red and Rutgers. The polyamines putrescine, spermidine, and spermine were present in all cultivars. Cadaverine was detected only in Rutgers. Levels of putrescine and spermidine declined between the immature and mature green stages of development and prior to the onset of climacteric ethylene production. In Pik Red and Rutgers, the decline persisted, whereas in Liberty, the putrescine level increased during ripening. Ripe pericarp of Liberty contained about three and six times more free (unconjugated) polyamines than Pik Red and Rutgers, respectively. No pronounced changes in spermidine or cadaverine occurred during ripening. The increase in the free polyamine level in ripe pericarp of Liberty may account for the reduction of climacteric ethylene production, and prolonged storage life.  相似文献   

18.
19.
During the work on the project on the identification of proteinkinases that phosphorylate protein microtubules of plants, we revealed with the help of bioinformatics the genes of assumed homologues of proteinkinase MAST2 that is associated with microtubules in animal cells. Respectively, the gene of the closest homologue of MAST2, the assumed protein that we have named GMLK (Grape MAST2-Like Kinase, A7NTE9_VITVI) was identified in the genome of grape Vitis vinifera. This study presents the results of the successful cloning of protein GMLK (A7NTE9_VITVI) cDNA from the leaves of the Pinot Noir grape.  相似文献   

20.
Vouillamoz JF  Grando MS 《Heredity》2006,97(2):102-110
Since the domestication of wild grapes ca 6000 years ago, numerous cultivars have been generated by spontaneous or deliberate crosses, and up to 10 000 are still in existence today. Just as in human paternity analysis, DNA typing can reveal unexpected parentage of grape cultivars. In this study, we have analysed 89 grape cultivars with 60 microsatellite markers in order to accurately calculate the identity-by-descent (IBD) and relatedness (r) coefficients among six putatively related cultivars from France ("Pinot", "Syrah" and "Dureza") and northern Italy ("Teroldego", "Lagrein" and "Marzemino"). Using a recently developed likelihood-based approach to analyse kinship in grapes, we provide the first evidence of a genetic link between grapes across the Alps: "Dureza" and "Teroldego" turn out to be full-siblings (FS). For the first time in grapevine genetics we were able to detect FS without knowing one of the parents and identify unexpected second-degree relatives. We reconstructed the most likely pedigree that revealed a third-degree relationship between the worldwide-cultivated "Pinot" from Burgundy and "Syrah" from the Rhone Valley. Our finding was totally unsuspected by classical ampelography and it challenges the commonly assumed independent origins of these grape cultivars. Our results and this new approach in grape genetics will (a) help grape breeders to avoid choosing closely related varieties for new crosses, (b) provide pedigrees of cultivars in order to detect inheritance of disease-resistance genes and (c) open the way for future discoveries of first- and second-degree relationships between grape cultivars in order to better understand viticultural migrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号