首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Herbaceous model species, especially Arabidopsis has provided a wealth of information about the genes involved in floral induction and development of inflorescences and flowers. While the genus Populus is an important model system for the molecular biology of woody plant. These two genuses differ in many ways. This study was designed to improve understanding of flower development in poplar at a system level, as its regulatory pathway to a large extent remains poorly known, owing to the presently limited mutant pool. To address this issue, a poplar GeneChip was employed to detect genes expressed during the whole floral developmental process. Using the expressed floral genes, a systematic gene network was constructed with the aid of functional association with Arabidopsis. The results suggested that autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways are involved in poplar flowering. Modularity analysis revealed several pathways in common with Arabidopsis, such as autonomous, gibberellin, vernalization and photoperiod pathways. In addition, brassinosteroid, stress-induced and floral suppression pathways were implicated as additional novel pathways. Notably, a difference in vernalization between Arabidopsis and poplar was revealed. Autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways integrated into a systematic gene network in floral development of poplar. Compared to Arabidopsis, brassinosteroid, stress-induced and floral suppression pathways are additional in poplar, and FLC is absent in vernalization pathway in poplar. Preliminary conclusions drawn here provide a basis for both identification of key genes and elucidation of molecular mechanisms involved in poplar floral development.  相似文献   

3.
Estimating the timing of flower bud formation in plants is essential to identify environmental factors that regulate floral transition. The presence of winter dormancy between the initiation of flowers and anthesis, characteristic of most trees in the temperate forests, hampers accurate estimation of the timing of floral transition. To overcome this difficulty, expression levels of flowering-time genes could be used as indicators of the timing of floral transition. Here, we evaluated the usefulness of molecular markers in estimating the timing of floral transition in Fagus crenata, a deciduous tree that shows intermittent and synchronized flowering at the population level. We selected FLOWERING LOCUS T (FT) as a candidate molecular marker and quantified the expression levels of its ortholog in F. crenata (FcFT). Subsequently, we analyzed the relationship between morphogenetic changes that occur between the vegetative state of the buds and the initiation of floral organs, and compared the FcFT expression levels in reproductive and vegetative buds, collected from spring to autumn. FcFT expression in leaves peaked at least two weeks before the morphological changes associated with flowering were visible in the buds in late July. FcFT expression levels were significantly higher in the reproductive buds than in the vegetative buds in July. These results suggest that the FcFT expression in July is a reliable indicator of the timing and occurrence of floral transition. This study highlights the utility of molecular tools in unraveling reproductive dynamics in plants, in combination with ecological and physiological approaches.  相似文献   

4.
5.
Bamboo flowering owns many unique characteristics and remains a mystery. To investigate the molecular mechanisms underlying flower development in bamboo, a petal-identity gene was identified as a PISTILLATA homologue named BoPI from Bambusa oldhamii (bamboo family). Expression analysis showed that BoPI was highly expressed in flower organs and gradually increased during flower development stage, suggesting that BoPI played an important role in flower development. Ectopic expression of BoPI in Arabidopsis caused conversion of sepals to petals. 35S::BoPI fully rescued the defective petal formation in the pi-1 mutant. BoPI could interact with BoAP3 protein in vitro. These results suggested that BoPI regulated flower development of bamboo in a similar way with PI. Besides flower organs, BoPI was also expressed in leaf and branch, which revealed that BoPI may involve in leaf and branch development. Similar to other MIKC-type gene, BoPI contained the C-terminal sequence but its function was controversial. Ectopic expression of the C-terminal deletion construct (BoPI- ΔC) in Arabidopsis converted sepals to petals; BoPI- ΔC interacted with BoAP3 on yeast two-hybrid assay, just like the full-length construct. The result implied that the C-terminal sequence may not be absolutely required for organ identity function in the context of BoPI.  相似文献   

6.

Key message

CaVIL1 is a homolog of VIL1, a regulator of vernalization response in Arabidopsis and acts as a flowering promoter in pepper which does not respond to vernalization and photoperiod.

Abstract

As part of our goal to study the genetic and molecular basis of transition to flowering in pepper, we isolated the late-flowering mutant E-2698. Aside from late flowering, multiple pleiotropic alterations of the shoot structure, such as enlarged and distorted leaves, weak apical dominance, and reduced angle of the lateral branches were observed, indicating a broad role for the mutated gene in pepper development. Genetic mapping and sequence analyses revealed that the disrupted gene in E-2698 is the pepper homolog of VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1) that acts as a regulator of vernalization in Arabidopsis through chromatin modification. The pepper gene, CaVIL1, contains a plant homeodomain motif associated with chromatin modification and a VERNALIZATION INSENSITIVE 3-interacting domain that is truncated in E-2698 and in two other allelic mutants. Because pepper flowering does not respond to vernalization, we postulate that CaVIL1 regulates flowering time via chromatin modification of unknown targets. Expression analysis indicated that CaVIL1 activates the flowering promoter CaFLOWERING LOCUS T and represses the flowering repressor CaAPETALA2. Furthermore, CaVIL1 represses several genes from the FLOWERING LOCUS C (FLC)-LIKE clade that are clustered together in the pepper genome. This indicates their possible involvement in flowering regulation in this species. Our results show that CaVIL1 is a major regulator of flowering and interacts with other flowering promoters and repressors, as well as with FLC-LIKE genes whose function in flowering regulation is not yet known in pepper.
  相似文献   

7.
8.
9.
The life cycle of flowering plants is partially defined by environmental cues like day length and temperature. In the model plant Arabidopsis thaliana and temperate cereals, such as barley (Hordeum vulgare) and wheat (Triticum spp.), differences in life cycle control have been associated with a natural variation in FLOWERING LOCUS C (FLC) and VERNALIZATION 1-3 (VRN1-3). In sugar beet (Beta vulgaris L.), variation in vernalization requirement and life cycle is determined by a major gene at the B locus. This gene has recently been identified as a pseudo-response regulator (PRR) gene BOLTING TIME CONTROL 1 (BTC1). A second gene in beet with homology to BTC1 and ARABIDOPSIS PSEUDO RESPONSE REGULATOR 7 (APRR7) in Arabidopsis was identified and termed Beta vulgaris PSEUDO RESPONSE REGULATOR 7 (BvPRR7). We functionally characterized BvPRR7 by transgenic analysis in Arabidopsis and expression profiling during development in beet. We show that BvPRR7 was diurnally regulated and responded to cold. Constitutive expression of BvPRR7 distorted diurnal rhythms and caused late flowering in Arabidopsis suggesting a conserved function of BvPRR7 in clock regulation. Conceivably, the retention of a functional role of BvPRR7 in clock regulation may have facilitated the evolution of a distinct role as major floral regulator of the second PRR7 homolog in beet, BTC1.  相似文献   

10.
11.
12.
The transition from vegetative to reproductive growth phase is a pivotal and complicated process in the life cycle of flowering plants which requires a comprehensive response to multiple environmental aspects and endogenous signals. In Arabidopsis, six regulatory flowering time pathways have been defined by their response to distinct cues, namely photoperiod, vernalization, gibberellin, temperature, autonomous and age pathways, respectively. Among these pathways, the autonomous flowering pathway accelerates flowering independently of day length by inhibiting the central flowering repressor FLC. FCA, FLD, FLK, FPA, FVE, FY and LD have been widely known to play crucial roles in this pathway. Recently, AGL28, CK2, DBP1, DRM1, DRM2, ESD4, HDA5, HDA6, PCFS4, PEP, PP2A-B’γ, PRMT5, PRMT10, PRP39-1, REF6, and SYP22 have also been shown to be involved in the autonomous flowering time pathway. This review mainly focuses on FLC RNA processing, chromatin modification of FLC, post-translational modification of FLC and other molecular mechanisms in the autonomous flowering pathway of Arabidopsis.  相似文献   

13.
Early flowering 3 (ELF3) is a regulator to modulate photoperiod flowering in Arabidopsis. The homologs of ELF3 in rice and barley also have been identified essential for regulation of flowering time. In the current study, TaELF3 genes, homologs of ELF3 in bread wheat (Triticum aestivum L.), were cloned by a comparative genomics approach and located on homologous group 1 chromosomes, designated as TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL, respectively. A sequence-tagged site (STS) marker was developed based on sequence polymorphism at the TaELF3-1DL locus. A quantitative trait locus (QTL) for heading date (HD) co-segregating with TaELF3-1DL explained 7.7–20.6% of the phenotypic variance in a RIL mapping population derived from the Gaocheng 8901/Zhoumai 16 cross genotyped using the wheat 90K iSelect assay. The late HD allele of TaELF3-1DL was prevalently selected in China’s specific wheat-growing regions and other countries. This study produces novel information in better understanding HD and provides a reliable functional marker for molecular marker-assisted selection in wheat breeding.  相似文献   

14.
15.

Key message

Expression analyses revealed that floral transition of Rosa odorata var. gigantea is mainly regulated by VRN1, COLs, DELLA and KSN, with contributions by the effects of phytohormone and starch metabolism.

Abstract

Seasonal plants utilize changing environmental and developmental cues to control the transition from vegetative growth to flowering at the correct time of year. This study investigated global gene expression profiles at different developmental stages of Rosa odorata var. gigantea by RNA-sequencing, combined with phenotypic characterization and physiological changes. Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between four different developmental stages (vegetative meristem, pre-floral meristem, floral meristem and secondary axillary buds) indicated that DNA methylation and the light reaction played a large role in inducing the rose floral transition. The expression of SUF and FLC, which are known to play a role in delaying flowering until vernalization, was down-regulated from the vegetative to the pre-floral meristem stage. In contrast, the expression of VRN1, which promotes flowering by repressing FLC expression, increased. The expression of DELLA proteins, which function as central nodes in hormone signaling pathways, and probably involve interactions between GA, auxin, and ABA to promote the floral transition, was well correlated with the expression of floral integrators, such as AGL24, COL4. We also identified DEGs associated with starch metabolism correlated with SOC1, AGL15, SPL3, AGL24, respectively. Taken together, our results suggest that vernalization and photoperiod are prominent cues to induce the rose floral transition, and that DELLA proteins also act as key regulators. The results summarized in the study on the floral transition of the seasonal rose lay a foundation for further functional demonstration, and have profound economic and ornamental values.
  相似文献   

16.

Key message

Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis.

Abstract

Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two β subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.
  相似文献   

17.
Flowering time in members of the Solanaceae plant family, such as pepper (Capsicum spp.) and tomato (Solanum lycopersicum), is an important agronomic trait for controlling shoot architecture and improving yield. To investigate the feasibility of flowering time regulation in tomato, an RNA-binding protein (RBP) encoding gene homologous to human Nucleolar protein interacting with the forkhead-associated (FHA) domain of pKI-67 (NIFK), CaRBP, was isolated from hot pepper. The function of CaRBP was determined in transgenic tomato. The deduced amino acid sequence includes an RNA recognition motif (RRM) and showed most similarity to the RRM present in a putative RBP encoded by human NIFK. CaRBP was highly expressed in the vegetative and reproductive tissues, such as leaves and fruits, respectively. Subcellular localization analysis indicated that CaRBP is a nucleolar protein. Heterologous expression of CaRBP under 35S promoter in tomato plants induced severe alteration of flowering with additional defects of vegetative organs. This floral retardation was associated with the alteration of SFT/SP3D and SlSOC1s as floral integrators. Furthermore, CaRBP reduces the expression levels of SlCOLs/TCOLs via changes in the expression of SlCDF3, SlFBHs, and SlFKF1s. This indicates a repressive effect of CaRBP on the regulation of flowering time in tomato. Overall, these results suggest that alteration in CaRBP expression levels may provide an effective means of controlling flowering time in day-neutral Solanaceae.  相似文献   

18.
19.
Gibberellin 2-oxidases (GA2oxs) irreversibly convert bioactive gibberellins (GAs) and their immediate precursors into inactive GAs via 2-β hydroxylation and so regulate gibberellin content in plants. However, to the best of our knowledge, little has been known about the GA2oxs and its function in cool season turfgrass Poa pratensis. In this study, rapid amplification of cDNA end (RACE) was employed to isolate PpGA2ox from P. pratensis. The open reading frame of PpGA2ox was 1 047 bp in length, corresponding to 348 amino acids. PpGA2ox was localized in both nucleus and cytoplasm. The expression of PpGA2ox could be up-regulated by 10 μM gibberellic acid, 5 μM methyl jasmonate, or 10 μM indole-3-acetic acid. In addition, its native promoter could drive GUS expression in both leaf apex and shoot apical region. Moreover, overexpression of PpGA2ox in Arabidopsis led to GA-deficiency leading to dwarf phenotype, delayed flowering time, and increased chlorophyll content. Our study suggests that PpGA2ox could be a candidate gene for breeding new cultivars of P. pratensis.  相似文献   

20.
Relatively little is known about pollination and other aspects of the reproductive biology of bamboos, but wind pollination is assumed to be the rule, at least in woody bamboos. Documenting the reproductive biology of woody bamboos is a complex task due to the long periods of time between flowering cycles, which range from 3 to 120 years. Insects visiting Guadua paniculata and G. inermis flowers were collected in the field. Scanning electron micrographs were taken of the visiting insects. Four species of bees, three from tribe Meliponini (Geotrigona acapulconis, Plebeia frontalis and Trigona fulviventris) and one from tribe Apini (Apis mellifera), along with a syrphid fly (Toxomerus teligera) were found visiting bamboo flowers. Some species of Hemiptera were also found feeding on the flowers, such as Neortholomus jamaicensis (Lygaeidae), or preying on the flower visitors (Apiomerus pictipes (Reduviidae)). Insects visiting bamboo inflorescences may facilitate the release of pollen grains into the air, promoting outcrossing and genetic flow among the individuals of the flowering bamboo populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号