首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
ATP citrate lyase (ACLY), a key enzyme in the metabolic reprogramming of many cancers, is widely expressed in various mammalian tissues. This study aimed to evaluate the effects and mechanisms of ACLY and its inhibitor BMS-303141 on hepatocellular carcinoma (HCC). In this study, ACLY was highly expressed in HCC tissues, especially in HepG2 and Huh7 cells, but was down-regulated in Hep3B and HCC-LM3 cells. Besides, ACLY knockdown inhibited HepG2 proliferation and clone formation, while opposite result was noticed in HCC-LM3 cells with ACLY overexpression. Moreover, ACLY knockdown impeded the migration and invasion abilities of HepG2 cells. Similarly, BMS-303141 suppressed HepG2 and Huh-7 cell proliferation. The p-eIF2α, ATF4, CHOP p-IRE1α, sXBP1 and p-PERK were activated in HepG2 cells stimulated by BMS-303141. In cells where ER stress was induced, ATF4 was involved in BMS-303141-mediated cell death procession, and ATF4 knockdown reduced HCC cell apoptosis stimulated by BMS-303141. In a mouse xenograft model, combined treatment with BMS-303141 and sorafenib reduced HepG2 tumour volume and weight. In addition, ACLY expression was associated with HCC metastasis and tumour-node-metastases staging. Survival analysis and Cox proportional hazards regression model showed that overall survival was lower in HCC patients with high ACLY expression; AFP level, TNM staging, tumour size and ACLY expression level were independent risk factors affecting their overall survival. In conclusion, ACLY might represent a promising target in which BMS-303141 could induce ER stress and activate p-eIF2α/ATF4/CHOP axis to promote apoptosis of HCC cells, and synergized with sorafenib to enhance the efficacy of HCC treatment.  相似文献   

6.
C/EBP homologous protein (CHOP) is a stress-inducible nuclear protein that is crucial for the development of programmed cell death and regeneration; however, the regulation of its function has not been well characterized. Slbo, a Drosophila homolog of C/EBP (CCAAT/enhancer binding protein), was shown to be unstabilized by tribbles. Here, we identified TRB3 as a tribbles ortholog in humans, which associated with CHOP to suppress the CHOP-dependent transactivation. TRB3 is induced by various forms endoplasmic reticulum (ER) stress later than CHOP. Tunicamycin treatment enhanced the TRB3 promoter activity, while dominant-negative forms of CHOP suppressed the tunicamycin-induced activation. In addition, the tunicamycin response region in the TRB3 promoter contains amino-acid response elements overlapping the CHOP-binding site, and CHOP and ATF4 cooperated to activate this promoter activity. Knockdown of endogenous ATF4 or CHOP expression dramatically repressed tunicamycin-induced TRB3 induction. Furthermore, knockdown of TRB3 expression decreased ER stress-dependent cell death. These results indicate that TRB3 is a novel target of CHOP/ATF4 and downregulates its own induction by repression of CHOP/ATF4 functions, and that it is involved in CHOP-dependent cell death during ER stress.  相似文献   

7.
8.
9.
ATP结合盒式运载蛋白A1(ATP-binding cassette transporter A1,ABCA1)是近年来发现的极其重要的脂质转运大分子膜蛋白,它可将过量胆固醇从细胞内向细胞外输送到载脂蛋白并包装成高密度脂蛋白(HDL)的膜蛋白,促进胆固醇的逆转运.初步研究转录因子ATF6对ABCA1的表达调控,结果发现,ATF6在人胚胎肾细胞HEK293内剂量依赖性地调节ABCA1基因转录及蛋白质表达. ATF6调节ABCA1与内质网应激信号通路无关. 启动子序列缺失与突变分析表明ATF6作用区位于ABCA1启动子上游-156~-928bp之间, 可能需要E-box的参与,但不需要DR4元件.进而,动物试验结果显示用腺病毒在C57小鼠肝脏过表达ATF6,在mRNA水平上调ABCA1. 本文的研究发现了ATF6新的功能以及调控ABCA1的新机制.  相似文献   

10.
11.
12.
13.
ATF3 negatively regulates adiponectin receptor 1 expression   总被引:1,自引:0,他引:1  
Adiponectin is an adipocyte-derived hormone that has antidiabetic and antiatherogenic effects through two membrane receptors, adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2). Although it has been reported that the expression of AdipoR1 and AdipoR2 is regulated under physiological and pathophysiological states, their regulation is largely unknown. Previously, we demonstrated that endoplasmic reticulum (ER) stress or obesity-inducible ATF3 negatively regulates the expression of adiponectin and AdipoR2. Here, we investigated the regulation of another adiponectin receptor, AdipoR1 by ATF3, to determine if ATF3 may contribute to impairment of adiponectin signaling by repressing the expression of both adiponectin and adiponectin receptors. We found that treatment with thapsigargin, a stimulator of ATF3 expression as an inducer of ER stress, decreased AdipoR1 expression in insulin-sensitive cells (HepG2, C2C12) and insulin secreting cells (MIN6N8). Furthermore, overexpression of lentivirus carrying-ATF3 decreased AdipoR1 expression in those cells, demonstrating that ATF3 downregulates AdipoR1 expression. Next, we investigated the effects of ATF3 on human AdipoR1 promoter activity and identified an ATF3-responsive region in the promoter. Both thapsigargin treatment and ATF3 expression repressed AdipoR1 promoter activity. Transfection studies using mutant constructs containing 5′-deletions in the human AdipoR1 promoter revealed that putative ATF/CRE site is located between the −248 and −224, TGACGCGG. Chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to human AdipoR1 promoter spanning from −248 to −224. Finally, deletion of the putative ATF/CRE site abrogated ATF3-mediated transrepression of the AdipoR1 promoter. Importantly, ATF3 expression was increased in hyperglycemia or TNF-α-treated C2C12 cells in which AdipoR1 expression was decreased, suggesting that ATF3 may contribute to downregulation of AdipoR1 by hyperglycemia and TNF-α. Collectively, these results demonstrate that ATF3 negatively regulates human AdipoR1 expression via binding to an ATF3-responsive region in the promoter, which plays an important role in attenuation of adiponectin signaling and induction of insulin resistance.  相似文献   

14.
15.
16.
17.
丙型肝炎病毒非结构蛋白NS4B诱导细胞非折叠蛋白反应   总被引:1,自引:0,他引:1  
用RT-PCR和免疫印迹的方法检测稳定表达NS4B的HeLa细胞中的XBP1;通过RT-PCR的方法在表达NS4B的HeLa和Huh-7细胞中检测ATF6,Grp78和caspase-12的转录,并且通过报告基因的方法分析XBP1和Grp78启动子活性。实验结果表明:在表达NS4B的HeLa细胞中检测到XBP1的两种形式(剪接和未剪接),此外,在细胞中ATF6、Grp78的转录水平和XBP1、Grp78启动子的荧光素酶活性较没有表达NS4B的HeLa和Huh-7细胞中的量有所增加;通过染色质免疫沉淀实验(ChIP)分析,这些增加可能是由于XBP1结合到了这些基因的启动子上引起的。总之,实验结果可提示HCVNS4B通过ATF6或XBP1途径引起内质网压力,导致UPR反应。NS4B可能在HCV的致病性中起着重要的作用,特别是在慢性肝炎,甚至肝细胞癌中。  相似文献   

18.
19.
20.
Naringenin improves lipoprotein profile and protects against cardiovascular disease. ATF6 is an endoplasmic reticulum (ER) stress sensor with the same activation processes with sterol regulator SREBPs. Clinical data revealed that ATF6 expression was associated with plasma cholesterol level. Here, we investigated whether naringenin was involved in the regulation of cholesterol efflux and tested the role of ER stress-ATF6 in the naringenin function. Results showed that naringenin increased cholesterol efflux to both apoA-I and HDL and gene expressions in ABCA1, ABCG1 and LXRα in RAW264.7 macrophages. Naringenin inhibited the cleaved ATF6 nuclear translocation and its target GRP78 and XBP-1 expressions. Naringenin-induced cholesterol efflux was modulated by treatment with ER stress inhibitor 4-phenylbutyric acid, inducer tunicamycin and ATF6 overexpression in RAW264.7 and/or THP-1 cells, which suggested the naringenin functions were mediated through inhibiting ER stress-ATF6 pathway. Next, we found high-fat diet (HFD) supplemented with naringenin increased by >1.2-fold in cholesterol efflux capacity in primary peritoneal macrophage in apoE−/− mice compared to only HFD-fed mice. The increase was significantly reduced by tunicamycin treatment. Naringenin decreased GRP78, XBP-1 and nuclear ATF6 levels in peritoneal macrophage and aorta and reduced atherosclerotic lesion at aortic root, but reversed by tunicamycin. These confirmed participation of ER stress-ATF6 in naringenin efficacy. Finally, we found naringenin promoted AKT phosphorylation; PI3K inhibitor LY294002 treatment increased nuclear ATF6 and reduced naringenin-enhanced ABCA1 expression and cholesterol efflux. We concluded naringenin as a regulator for cholesterol efflux, and the regulation was mediated by ATF6 branch of ER stress and PI3K/AKT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号