首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is a second messenger with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. In recent years, hydrogen sulphide (H2S) has been found to have similar functions, but crosstalk between NO and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment with the NO donor sodium nitroprusside (SNP) improved the survival percentage of maize seedlings and alleviated an increase in electrolyte leakage and a decrease in tissue vitality as well as accumulation of malondialdehyde, indicating that pretreatment with SNP improved the heat tolerance of maize seedlings. In addition, pretreatment with SNP enhanced the activity of L‐cystine desulfhydrase, which, in turn, induced accumulation of endogenous H2S, while application of H2S donors, NaHS and GYY4137, increased endogenous H2S content, followed by mitigating increase in electrolyte leakage and enhanced survival percentage of seedlings under heat stress. Interestingly, SNP‐induced heat tolerance was enhanced by application of NaHS and GYY4137, but was eliminated by inhibitors of H2S synthesis DL‐propargylglycine, aminooxyacetic acid, potassium pyruvate and hydroxylamine, and the H2S scavenger hypotaurine. All of the above‐mentioned results suggest that SNP pretreatment could improve heat tolerance, and H2S may be a downstream signal molecule in NO‐induced heat tolerance of maize seedlings.  相似文献   

2.
Salicylic acid (SA), is a plant hormone with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. Hydrogen sulfide (H2S) is emerging similar functions, but crosstalk between SA and H2S in the acquisition of heat tolerance is not clear. Our recent study firstly reported that SA treatment enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, followed by induced endogenous H2S accumulation, which in turn improved the heat tolerance of maize seedlings.1 In addition, NaHS, a H2S donor, enhanced SA-induced heat tolerance, while its biosynthesis inhibitor DL-propargylglycine (PAG) and scavenger hydroxylamine (HT) weakened SA-induced heat tolerance. Also, NaHS had no significant effect on SA accumulation and its biosynthesis enzymes phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H) activities, as well as significant difference was not observed in NaHS-induced heat tolerance of maize seedlings by SA biosynthesis inhibitors paclobutrazol (PAC) and 2-aminoindan-2-phosph- onic acid (AIP) treatment.1 Further study displayed that SA induced osmolytes (proline, betaine and trehalose) accumulation and enhancement in activity of antioxidant system in maize seedlings. These results showed that antioxidant system and osmolyte play a synergistic role in SA and H2S crosstalk-induced heat tolerance of maize seedlings.  相似文献   

3.
Carbon monoxide (CO), an endogenous signaling molecule in animals, also provides potent cytoprotective effects including attenuation of lung lipid peroxidation induced by oxidant in the mouse. Our recent work demonstrated that 0.01 μmol/L hematin (a CO donor) treatment of wheat plants alleviated salt-induced oxidative damage in seedling leaves. In this report, we further discovered that hematin pretreatment (≤ 0.1 μmol/L) could delay wheat leaf chlorophyll loss mediated by further treatment of H202 and paraquat, two reactive oxygen species (ROS) sources, in dose-and even time-dependent manners. Also, compared with the control samples, seedling leaves pretreated with 0.01 or 0.1 μmol/L hematin for 24 h exhibited lower levels of H2O2 and lipid peroxidation, as well as higher contents of chlorophyll and activities of antioxidant enzymes. Such beneficial effects exerted by hematin were mimicked by the pretreatment of antioxidant butylated hydroxytoluene (BHT), and differentially reversed when CO scavenger hemoglobin (Hb), or CO specific synthetic inhibitor ZnPPIX was added, respectively. Taken together, the results presented In this paper directly illustrate for the first time that CO is able to strongly protect plants from oxidative damage caused by the overproduction of ROS, and strengthens the evidence that CO is a potent antioxidant in various abiotic and biotic stresses, as similar results have been shown in animal tissues.  相似文献   

4.
Hydrogen sulfide (H2S) has long been considered as a phytotoxin, but nowadays as a cell signal molecule involved in growth, development, and the acquisition of stress tolerance in higher plants. In the present study, hydrogen sulfide donor, sodium hydrosulfide (NaHS), pretreatment markedly improved germination percentage of seeds and survival percentage of seedlings of maize under heat stress, and alleviated an increase in electrolyte leakage of roots, a decrease in tissue vitality and an accumulation of malondialdehyde (MDA) in coleoptiles of maize seedlings. In addition, pretreatment of NaHS could improve the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and lower proline dehydrogenase (ProDH) activity, which in turn induced accumulation of endogenous proline in maize seedlings. Also, application of proline could enhance endogenous proline content, followed by mitigated accumulation of MDA and increased survival percentage of maize seedlings under heat stress. These results suggest that sodium hydrosulfide pretreatment could improve heat tolerance of maize and the acquisition of this heat tolerance may be involved in proline.  相似文献   

5.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

6.
Methylglyoxal (MG) was traditionally viewed as toxic by-product of glycolysis and photosynthesis in plants, but now is emerging as a signaling molecule, which, similar to hydrogen sulfide (H2S), participates in regulating seed germination, growth, development, and response to abiotic stress. However, whether exists an mutual effect between MG and H2S in improving thermotolerance in plants is not found to be reported. In this paper, interplay between MG and H2S in the formation of thermotolerance in maize seedlings was investigated. The results indicated that MG pretreatment elevated the survival percentage of maize seedlings under high-temperature stress, manifesting that MG could boost the thermotolerance of maize seedlings. Interestingly, MG-induced thermotolerance was reinforced by sodium hydrosulphide (NaHS, H2S donor), while impaired by dl-propargylglycine (inhibitor of H2S biosynthesis) and hypotaurine (scavenger of H2S), respectively. In addition, H2S could induce the thermotolerance of maize seedlings, which was impaired by aminoguanidine (AG) and N-acetyl-l-cysteine (NAC) (MG scavengers), respectively. Furthermore, MG stimulated the activity of a key enzyme in H2S biosynthesis, l-cysteine desulfhydrase, which, in turn, triggered the elevation of endogenous H2S in maize seedlings. In addition, H2S increased the level of endogenous MG; this increase was crippled by AG and NAC. This paper, for the first time, reported that MG could improve the thermotolerance of maize seedlings, and its acquisition was, at least partly, mediated by H2S.  相似文献   

7.
Hydrogen peroxide (H2O2), a second messenger, plays a vital role in seed germination and plant growth, development as well as the acquisition of stress tolerance, while hydrogen sulfide (H2S) is considered as a new emerging cell signal molecule in higher plants. In the present study, soaking of H2O2 greatly improved germination percentage of Jatropha curcas seeds, stimulated the increase of l-cysteine desulfhydrase activity, which in turn induced accumulation of H2S. On the contrary, pretreatment of aminooxyacetic acid (AOA), inhibitor of H2S biosynthesis, eliminated H2O2 stimulated the increase of activity of l-cysteine desulfhydrase and accumulation of H2S as well as improvement of germination percentage. In addition, exogenously applied H2S also could improve germination percentage of seeds of J. curcas. These results suggested that pretreatment of H2O2 could improve germination percentage of J. curcas seeds and this improvement was mediated by H2S.  相似文献   

8.
9.
Abstract

Aiming to clarify the mechanisms by which eukaryotes acquire tolerance to oxidative stress, adaptive and cross-protection responses to oxidants were investigated in Saccharomyces cerevisiae. Cells treated with sub-lethal concentrations of menadione (a source of superoxide anions) exhibited cross-protection against lethal doses of peroxide; however, cells treated with H2O2 did not acquire tolerance to a menadione stress, indicating that menadione response encompasses H2O2 adaptation. Although, deficiency in cytoplasmic superoxide dismutase (Sod1) had not interfered with response to superoxide, cells deficient in glutathione (GSH) synthesis were not able to acquire tolerance to H2O2 when pretreated with menadione. These results suggest that GSH is an inducible part of the superoxide adaptive stress response, which correlates with a decrease in the levels of intracellular oxidation. On the other hand, neither the deficiency of Sod1 nor in GSH impaired the process of acquisition of tolerance to H2O2 achieved by a mild pretreatment with peroxide. Using a strain deficient in the cytosolic catalase, we were able to conclude that the reduction in lipid peroxidation levels produced by the adaptive treatment with H2O2 was dependent on this enzyme. Corroborating these results, the pretreatment with low concentrations of H2O2 promoted an increase in catalase activity.  相似文献   

10.
Phosphomannose isomerase (PMI) is an enzyme that catalyses the first step of the l-galactose pathway for ascorbic acid (AsA) biosynthesis in plants. To clarify the physiological roles of PMI in AsA biosynthesis, the cDNA sequence of PMI was cloned from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) and overexpressed in tobacco transformed with Agrobacterium tumefaciens. The AsA and soluble sugar contents were lower in 35S::BcPMI2 tobacco than in wild-type tobacco. However, the AsA level in BcPMI2-overexpressing plants under stress was significantly increased. The T1 seed germination rate of transgenic plants was higher than that of wild-type plants under NaCl or H2O2 treatment. Meanwhile, transgenic plants showed higher tolerance than wild-type plants. This finding implied that BcPMI2 overexpression improved AsA biosynthetic capability and accumulation, and evidently enhanced tolerance to oxidative and salt stress, although the AsA level was lower in transgenic tobacco than in wild-type tobacco under normal condition.  相似文献   

11.
Abiotic stresses, such as high temperature and drought, are major limiting factors of crop production and growth. Coronatine (COR), a structural and functional analog of jasmonates, is suggested to have a role in abiotic stress tolerance. The aim of our study was to examine whether pretreatment with COR enhances the tolerance of chickpea (Cicer arietinum L. cv ICC 4958) roots to PEG-induced osmotic stress, heat stress, and their combination. Therefore, seedlings raised hydroponically in a growth chamber for 15 days were pretreated with or without COR at 0.01 μM for 24 h and then exposed to 6 % PEG 6000-induced osmotic stress or heat (starting at 35 °C and then gradually increased 1 °C every 15 min and kept at 44 °C for 1 h) stress for 3 days. After different treatment periods, the changes in relative growth rate (RGR); malondialdehyde (MDA), proline (Pro), and hydrogen peroxide (H2O2) contents; and the activities of antioxidant enzymes/isoenzymes in roots of chickpea seedlings with or without 0.01 μM COR application were studied. RGR in roots was increased by COR application. Under all stress conditions, H2O2, MDA, and Pro levels increased sharply, but pretreatment with COR significantly reduced them. Moreover, COR increased the activities of H2O2 scavenger enzymes such as catalase (CAT) under heat stress, ascorbate peroxidase (POX) under PEG stress, and CAT and POX under combined stresses. Therefore, COR might alleviate adverse effects of PEG stress and heat stress and combined stresses on roots of chickpea by reduction of H2O2 production, enhancing or keeping the existent activity of antioxidant enzymes, thereby preventing membrane peroxidation.  相似文献   

12.
Increasing evidence indicates that hydrogen sulfide (H2S) is the third “gas signal molecule” after NO and CO in animal. In the present study, we found that soybean (Glycine max L.) seedlings sprayed with exogenous H2S donor NaHS prolonged the longer survival time of life, and enlarged higher biomass of both leaf and root than in non-sprayed controls under continuous drought stress. With the continuous drought stress, the content of chlorophyll in the leaves of both Xu-1 and Xu-6 cultivar of soybean decreased dramatically. The drought-induced decrease in chlorophyll could be alleviated by spraying H2S donor. It was also shown that spraying with H2S donor dramatically retained higher activities of superoxide dismutase (SOD, EC 1.1.5.1.1), catalase (CAT, EC1.11.1.6) and lower activity of lipoxygenases (LOX, EC 1.13.11.12), delayed excessive accumulation of malondialdehyde, hydrogen peroxide, and superoxide anion (O2·−) compared with the control. These results suggest that H2S can increase drought tolerance in soybean seedlings by acting as an antioxidant signal molecule for the response.  相似文献   

13.
Plants often face a variety of abiotic stresses, which affects them negatively and lead to yield loss. The antioxidant system efficiently removes excessive reactive oxygen species and maintains redox homeostasis in plants. With better understanding of these protective mechanisms, recently the concept of hydrogen sulfide (H2S) and its role in cell signaling has become the center of attention. H2S has been recognized as a third gasotransmitter and a potent regulator of growth and development processes such as germination, maturation, senescence and defense mechanism in plants. Because of its gaseous nature, H2S can diffuse to different part of the cells and balance the antioxidant pools by supplying sulfur to cells. H2S showed tolerance against a plethora of adverse environmental conditions like drought, salt, high temperature, cold, heavy metals and flood via changing in level of osmolytes, malonaldialdehyde, Na+/K+ uptake, activities of H2S biosynthesis and antioxidative enzymes. It also promotes cross adaptation through persulfidation. H2S along with calcium, methylglyoxal and nitric oxide, and their cross talk induces the expression of mitogen activated protein kinases as well as other genes in response to stress. Therefore, it is sensible to evaluate and explore the stress responsive genes involved in H2S regulated homeostasis and stress tolerance. The current article is aimed to summarize the recent updates on H2S-mediated gene regulation in special reference to abiotic stress tolerance mechanism, and cross adaptation in plants. Moreover, new insights into the H2S-associated signal transduction pathway have also been explored.  相似文献   

14.
We investigated the interaction between heat shock protein 70 (HSP70) and abscisic acid (ABA)-induced antioxidant response of maize to the combination of drought and heat stress. First, the increased activities of enzymes, including superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT), induced by drought were less than those by heat or combined drought and heat stress, except some individual cases (e.g. CAT in leaves, GR in roots). Second, both HSP70 synthesis and H2O2 production increased prominently under drought, heat or their combination stress; the increase in leaves induced by drought and heat combination was the highest, followed by heat and by drought, while the increase in roots had not visible difference. Third, either in leaves or roots, pretreatment with ABA inhibitor, HSP70 inhibitor and H2O2 scavenger, significantly arrested the stress-induced increase of antioxidant enzyme activities, and ABA inhibitor and H2O2 scavenger obviously suppressed HSP70 synthesis, while HSP70 inhibitor slightly heightened H2O2 accumulation. Finally, 100 μM ABA significantly enhanced the activities of antioxidant enzymes, HSP70 expression and H2O2 production under stresses in comparison with ABA-deficient mutant vp5 maize plants without pretreatment. Thus, ABA-induced H2O2 production enhances the HSP70 synthesis and up-regulates the activities of antioxidant enzymes, resulting in the suppression of cellular reactive oxygen species (ROS) levels. Our results suggest that HSP70 may play a crucial role in ABA-induced antioxidant defense of maize to drought and heat combination.  相似文献   

15.
H. Gong  G. Chen  F. Li  X. Wang  Y. Hu  Y. Bi 《Biologia Plantarum》2012,56(3):422-430
Glucose-6-phosphate dehydrogenase (G6PDH) has been implicated in supplying reduced nicotine amide cofactors for biochemical reactions and in modulating the redox state of cells. In this study, the role of G6PDH in thermotolerance of the calli from Przewalskia tangutica and tobacco (Nicotiana tabacum L.) was investigated. Results showed that Przewalskia tangutica callus was more sensitive to heat stress than tobacco callus. The activity of G6PDH and antioxidant enzymes (ascorbate peroxidase, catalase, peroxidase and superoxide dismutase) in calli from Przewalskia tangutica and tobacco increased after 40 °C treatment, although two calli exhibited a difference in the degree and timing of response to heat stress. When G6PDH was partially inhibited by glucosamine pretreatment, the antioxidant enzyme activities and thermotolerance in both calli significantly decreased. Simultaneously, the heat-induced H2O2 content and the plasma membrane NADPH oxidase activity were also reduced. Application of H2O2 increased the activity of G6PDH and antioxidant enzymes in both calli. Diphenylene iodonium, a NADPH oxidase inhibitor, counteracted heatinduced H2O2 accumulation and reduced the heat-induced activity of G6PDH and antioxidant enzymes. Moreover, exogenous H2O2 was effective in restoring the activity of G6PDH and antioxidant enzymes after glucosamine pretreatment. Western blot analysis showed that G6PDH gene expression in both calli was also stimulated by heat and H2O2, and blocked by DPI and glucosamine under heat stress. Taken together, under heat stress G6PDH promoted H2O2 accumulation via NADPH oxidase and the elevated H2O2 was involved in regulating the activity of antioxidant enzymes, which in turn facilitate to maintain the steady-state H2O2 level and protect plants from the oxidative damage.  相似文献   

16.
Gases such as ethylene, hydrogen peroxide (H2O2), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2S and NO in plants, particularly under stress conditions.  相似文献   

17.
Compared with growing bacteria, carbohydrate-starved cells of Enterococcus faecalis show development of a multiresistance state against heat, H2O2, acid, and ethanol, but not against UV irradiation. The kinetics of acquisition of resistance is different according to the stress. Three hours of starvation provide maximal resistance against ethanol, while the tolerance to heat, H2O2, and acid increases progressively with the duration of starvation. Chloramphenicol treatment does not abolish the ethanol tolerance. Protein synthesis inhibition during the transitional growth phase and the first hours of starvation partially inhibit the acquisition of heat and oxidative resistances. Antibiotic treatment after 3 h of starvation does not affect the increase of these resistances. We suggest that synthesis of specific proteins revealed by 2-D gel analysis in the first 3 h of starvation, followed by a second mechanism related to protein degradation or alteration, is necessary for acquisition of maximal resistance towards heat and oxidative stresses.  相似文献   

18.
Mechanical stimulation (MS), widely existing but usually ignored in nature, is one of the major environmental stress factors. MS by increasing the rotational speed of shaker incubator could alleviate a decrease in vitality of tobacco (Nicotiana tabacum L.) suspension cultured cells and reduce the accumulation of MDA under chilling stress at 1°C, which in turn improved survival percentage under chilling stress and regrowth ability of tobacco suspension cells after chilling stress. In addition, MS could increase the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and induce the accumulation of endogenous proline in tobacco cells; exogenously applied proline also could enhance its endogenous level under normal culture conditions and survival percent-age of the cells under chilling stress. These results suggest that MS could improve chilling tolerance of tobacco suspension cells and the acquisition of this chilling tolerance was related to proline.  相似文献   

19.
There seems to be no report in the literature on the effect of melatonin (MT) in relieving the detrimental effects of combined application of salt stress (SS) and iron deficiency (ID). Therefore, the effect of MT on the accumulation/synthesis of endogenous nitric oxide (NO) and hydrogen sulphide (H2S) and how far these molecules are involved in MT-improved tolerance to the combined application of ID and SS in pepper (Capsicum annuum L) were tested. Hence, two individual trials were set up. The treatments in the first experiment comprised: Control, ID (0.1 mM FeSO4), SS (100 mM NaCl) and ID + SS. The detrimental effects of combined stresses were more prominent than those by either of the single stress, with respect to growth, oxidative stress and antioxidant defense attributes. Single stress or both in combination improved the endogenous H2S and NO, and foliar-applied MT (100 µM) led to a further increase in NO and H2S levels. In the second experiment, 0.1 mM scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) and that of H2S, hypotuarine (HT) were applied along with MT to get further evidence whether NO and H2S are involved in MT-induced tolerance to ID and SS. MT combined with cPTIO and HT under a single or combined stress showed that NO effect was reversed by the NO scavenger, cPTIO, alone but the H2S effect was inhibited by both scavengers. These findings suggested that tolerance to ID and SS induced by MT may be involved in downstream signal crosstalk between NO and H2S.  相似文献   

20.
Hydrogen sulfide (H2S) is considered as a cellular signaling intermediate in higher plants, but corresponding molecular mechanisms and signal transduction pathways in plant biology are still limited. In the present study, a combination of pharmacological and biochemical approaches was used to study the effect of H2S on the alleviation of GA-induced programmed cell death (PCD) in wheat aleurone cells. The results showed that in contrast with the responses of ABA, GA brought about a gradual decrease of l-cysteine desulfhydrase (LCD) activity and H2S production, and thereafter PCD occurred. Exogenous H2S donor sodium hydrosulfide (NaHS) not only effectively blocked the decrease of endogenous H2S release, but also alleviated GA-triggered PCD in wheat aleurone cells. These responses were sensitive to hypotaurine (HT), a H2S scavenger, suggesting that this effect of NaHS was in an H2S-dependent fashion. Further experiment confirmed that H2S, rather than other sodium- or sulphur-containing compounds derived from the decomposing of NaHS, was attributed to the rescuing response. Importantly, the reversing effect was associated with glutathione (GSH) because the NaHS triggered increases of endogenous GSH content and the ratio of GSH/oxidized GSH (GSSG) in GA-treated layers, and the NaHS-mediated alleviation of PCD was markedly eliminated by l-buthionine-sulfoximine (BSO, a selective inhibitor of GSH biosynthesis). The inducible effect of NaHS was also ascribed to the modulation of heme oxygenase-1 (HO-1), because the specific inhibitor of HO-1 zinc protoporphyrin IX (ZnPP) significantly suppressed the NaHS-related responses. By contrast, the above inhibitory effects were reversed partially when carbon monoxide (CO) aqueous solution or bilirubin (BR), two of the by-products of HO-1, was added, respectively. NaHS-triggered HO-1 gene expression in GA-treated layers was also confirmed. Together, the above results clearly suggested that the H2S-delayed PCD in GA-treated wheat aleurone cells was associated with the modulation of GSH homeostasis and HO-1 gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号