首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood-pastures are threatened anthropogenic biotopes that provide habitat for an extensive group of species. Here we studied the effect of management, grazing intensity, time since abandonment, historical land-use intensity, soil properties and stand conditions on communities of saprotrophic fungi in wood-pastures in Central Finland. We found that the proportion of broadleaved trees and soil pH are the major drivers in the communities of saprotrophic fungi in these boreal wood-pastures. In addition, tree species richness, soil moisture, historical land-use intensity and time since abandonment affected the communities of saprotrophic fungi. Current management or grazing intensity did not have a clear effect on saprotrophic fungal species richness, although dung-inhabiting fungal species richness was highest at intermediate to high grazing intensity. Obviously, there were many more dung-inhabiting fungal species on grazed than on abandoned sites. Our study highlights the conservation value of wood-pastures as hotspots of saprotrophic fungi.  相似文献   

2.
《Plant Ecology & Diversity》2013,6(2-3):251-264
Background: Rock outcrops have been shown to provide specific conditions for bryophyte communities, but no studies have focused on the importance of microhabitats on such communities.

Aim: To analyse the distribution pattern of bryophyte species from granite and schist outcrops in three microhabitats (rock surfaces, fissures and cavities) in Portugal.

Methods: Sample plots were established in fissures, cavities and on rock surfaces of rock outcrops in north and central Portugal. Micro-scale variables, such as exposure and slope were assessed for each microhabitat.

Results: The microhabitats most different in species composition were surfaces versus cavities and surfaces versus fissures, both on granite and schist. Short-lived shuttle species tended to be associated with surfaces, and perennial species were more frequent in cavities and fissures. Both on granite and schist, the number of species found in each microhabitat was highest in cavities, followed by fissures and rock surfaces. The most relevant predictors of bryophyte richness were microhabitat type, exposure and rock type.

Conclusions: This investigation confirmed that rock microhabitats play an important role in bryophyte diversity by promoting habitat heterogeneity. In addition, our results clearly suggest local explanations for variation in bryophyte species richness and communities.  相似文献   

3.
Changes of agricultural practices have led to decline of semi-natural habitats sustained by traditional animal husbandry in many European regions. The abandonment of semi-natural pastures leads to increase of vascular plant biomass and subsequent decline of weak competitors such as bryophytes. Re-establishing traditional animal husbandry may potentially restore biodiversity but the success of such measures remains insufficiently known. In this study, we asked if re-establishing cattle grazing on previously abandoned grasslands will restore their bryophyte communities. The effect of cattle grazing on bryophyte communities of mesic semi-natural grasslands was studied in south-western Finland in a comparison of (i) continuously grazed pastures, (ii) previously abandoned pastures where grazing was re-established during 1990s, and (iii) abandoned pastures, where grazing had ceased during late 1960s to early 1980s. The average cover, species richness, species density and species diversity of bryophytes were significantly higher in the continuously grazed than in the abandoned grasslands. Ordination analyses revealed clear differences also in community structure between the management classes. Re-established grasslands were ecologically heterogeneous and situated in between the continuously grazed and abandoned grasslands in all characteristics, indicating variable effect of the restoration measure. Seventeen bryophyte species were recognized as significant indicators of the three grassland classes, four of which could be used as indicators of valuable grassland habitats. Although there was variation in the consequences of re-introduction of grazing, the results give evidence of positive effect of grazing on regaining bryophyte diversity of abandoned grasslands.  相似文献   

4.
The effect of tree species composition, stand structure characteristics and substrate availability on ground-floor bryophyte assemblages was studied in mixed deciduous forests of Western Hungary. Species composition, species richness and cover of bryophytes occurring on the soil and logs were analysed as dependent variables. The whole assemblage and functional groups defined on the basis of substrate preference were investigated separately. Substrate availability (open soil, logs) was the most prominent factor in determining species composition, cover and diversity positively, while the litter of deciduous trees had a negative effect on the occurrence of forest floor bryophytes. Besides, bryophyte species richness increased with tree species and stand structural diversity, and for specialist epiphytic and epixylic species log volume was essential. Sapling density and light heterogeneity were influential on bryophyte cover, especially for the dominant terricolous species. Many variables of the forest floor bryophyte community can be estimated efficiently by examining stand structure in the studied region. Selective cutting increasing tree species diversity, stand structural heterogeneity and dead wood volume can maintain higher bryophyte diversity in this region than the shelter-wood system producing even-aged, monodominant, structurally homogenous stands.  相似文献   

5.
The removal of timber during harvesting substantially reduces important invertebrate habitat, most noticeably microhabitats associated with fallen trees. Oribatid mite diversity in downed woody material (DWM) using species-level data has not been well studied. We investigated the influence of decaying logs on the spatial distribution of oribatid mites on the forest floor at the sylviculture et aménagement forestiers écosystémique (SAFE) research station in the Abitibi region in NW Québec. In June 2006, six aspen logs were selected for study, and samples were taken at three distances for each log: directly on top of the log (ON), directly beside the log (ADJ) and at least one metre away from the log and any other fallen wood (AWAY). Samples ON logs consisted of a litter layer sample, an upper wood sample and an inner wood sample. Samples at the ADJ and AWAY distances consisted of litter samples and soil cores. The highest species richness was collected ON logs, and logs harboured a distinct oribatid species composition compared to nearby forest floor. There were species-specific changes in abundance with increasing distance away from DWM, which indicates an influence of DWM in structuring oribatid assemblages on the forest floor. Additionally, each layer (litter, wood and soil) exhibited a unique species composition and hosted a different diversity of oribatid mites. This study further highlights the importance of DWM to forest biodiversity by creating habitat for unique assemblages of oribatid mites.  相似文献   

6.
The bryophyte vegetation of 3 pairs of unmanaged and managed forest stands, representing Oxalis drained peatland, Aegopodium and Oxalis forest site type, were compared. The total number of bryophyte species in unmanaged stands was 74 and that in managed stands 54. Out of the 20 species occurring only in unmanaged forests, 9 grow on decaying wood, and 3 on trunks or bases of big trees; 13 of them were hepatics. In unmanaged forests 11 hemerophobic species were recorded altogether. Although the difference in substrate and species diversity between unmanaged and managed stands is not statistically significant, in unmanaged forests more substrates characteristic for an old-growth stand are available, and the percentage of species preferring dryer habitats or prolonged humidity is a bit higher than in managed forests; the percentage of species associated with better illuminated habitats is higher in managed forests. Analysis of classification structure of the bryophyte layer synusia shows that the number of societies is also higher in unmanaged forests. This is associated with more numerous microhabitats; the average light and humidity indices calculated for every society, confirm this conclusion. The large discrepancy in bryophyte layer classification structure in old-growth and managed forests of the same forest site type is manifested not so much by species content in synusia as by their abundance proportions. The larger diversity of classification units in unmanaged forests is also seen at the synusia facies level; four of nine facies are confined exclusively to unmanaged stands. This is a strong argument for the informativeness of bryophyte layer classification structure for purposes of indication and monitoring as well.  相似文献   

7.
An analysis of factors influencing the diversity of macrofungi fruiting on decaying beech logs at site level is presented. Variables related to log size and shape and decay stage were found to explain up to 56% of the variation in total species richness and 42% of the variation in the richness of threatened (red-listed) species. Inclusion of variables relating to the vernal flora and the degree of soil contact further increased the explained variation in total species richness to 71%, but these variables were non-significant with respect to red-listed species. However, inclusion of the variable log type, distinguishing uprooted logs, logs broken at root neck and logs broken 1–7 and 8–15 m above ground, increased the amount of explained variation in richness of red-listed species to 50%. Among the log size and shape variables, the number of bole forks was superior in describing the variation in both total and red-listed species richness. Accordingly, forked trees should preferably be selected for decay in order to improve biodiversity, since they support comparably higher species diversity than unforked logs and have limited economical value. The importance of log type for the richness of threatened species appears to be connected with the occurrence of certain non-dominant primary decayers, causing heart rot, subsequently allowing the establishment of red-listed species. Accordingly, it is suggested that a high diversity of primary decayers may be a key to the conservation of wood decaying fungi. Microclimatic variables were found to have a limited effect on fruit body diversity on the studied logs; however, the microclimatic regime is discussed as an important factor in relation to management of dead wood for fungal biodiversity.  相似文献   

8.
Forest patches with high biological value are protected as woodland key habitats (WKH), which are identified by the presence of forest structures and indicator species. However, management for conservation needs to consider also managed forests as habitats for species. In this respect, there is a need to set quantitative targets for species and structures at different landscape scales. Due to non-intensive methods of forest management used prior to 1940 in Latvia, it might be expected that large areas of forest have developed structures that can support many species characteristic of natural forests. The aim of the study was to create a model that best described the richness of bryophyte species that are characteristic of natural forests, using forest structures as explanatory factors. The structures and bryophyte communities on living trees and coarse woody debris (CWD) were described in plots along transects blindly placed in areas dominated by State forests under commercial management. Explanatory variables related to tree species composition and tree size explained 54% of the variation in WKH indicator species richness on living trees. The best explanatory factors were maximum diameter of deciduous tree species and CWD. Low richness of total bryophyte and indicator species was found on dead wood, and the amount of variation in bryophyte species richness on CWD explained by explanatory variables was low. The study indicates the importance of deciduous tree substrate in managed forests in maintaining the spatial continuity of epiphytic species diversity. However, the forests in the managed forest landscape did not support high diversity of epixylic species, even in the WKHs, due to low diversity of suitable dead wood substrate.  相似文献   

9.
Biological legacies soften pine plantation effects for bryophytes   总被引:1,自引:0,他引:1  
Biological legacies are organic structures and patterns remaining after a disturbance that may contribute to the complexity of the recovering vegetation. Legacies may, in turn, reduce the impacts of human disturbances such as logging and habitat transformation on elements of biodiversity. To examine the effects of biological legacies on biotic responses after disturbance, we surveyed 32 sites for bryophytes in an area subject to large-scale conversion of native eucalypt forest to exotic Pinus radiata D. Don plantations in eastern Australia. We sampled bryophyte and substrate diversity (log, bare ground, upturned tree/log, and trees) in eight sites in each of four landscape context classes: pine plantation stands, elliptical-shaped remnants, strip-shaped remnants, and controls in a large area of contiguous, unmanaged eucalypt forest. We found a muted response by individual species of bryophyte to landscape context. We attribute this, in part, to the presence of logs in the intensively managed pine plantation sites. The boost in bryophyte diversity from species on logs meant that some pine sites supported similar species composition to the continuous eucalypt forest controls. Our findings also underline the importance of local controls and structural variation, including leaving logs and native trees in plantations, for enhancing bryophyte species richness in managed landscapes.  相似文献   

10.
11.
Wood-pastures are fragile ecosystems because they were formed by, and depend on specific, low-intensity multifunctional management. Although their ecological and cultural significance is high, wood-pastures are rapidly deteriorating all over Europe, mainly due to changing land use. We still lack a basic understanding of the ecological value of wood-pastures, and in which features they differ from other landscape elements. In this paper we investigated the ecological value of wood-pastures for passerine birds by (i) comparing bird assemblages of wood-pastures with those of closed forests and open pastures and (ii) exploring the relationships between variables describing wood-pastures and species traits of the bird assemblages. Our study region (Southern Transylvania, Romania) provides a unique opportunity to understand the importance of a traditional cultural and ecological environment for many different organisms. Wood-pastures had a higher overall number of bird species, and a higher spatial turnover in bird community composition than closed forests and open pastures. We found significant associations between bird species traits and habitat structural elements in wood-pastures such as large trees, oak- and pear trees and shrubs. Our findings suggest that traditional wood-pastures in Southern Transylvania have distinct and rich passerine bird communities. This richness is inextricably linked to the multifunctional, low-intensity land use traditionally applied in the wood-pastures that promotes high niche diversity. For effective conservation of the biodiversity of wood-pastures, a detailed understanding is needed of how different management regimes may influence the key structural elements of wood-pastures relevant for biodiversity and these should be protected.  相似文献   

12.
Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer ‘lifeboats’ to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 ‘retention aspens’ on 14 differently aged retention sites with 102 ‘conservation aspens’ on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered) and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20–30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20–30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old-growth forests.  相似文献   

13.
In natural systems, extended phenotypes of trees can be important in determining the species composition and diversity of associated communities. Orchards are productive systems where trees dominate, and can be highly biodiverse, but few studies have considered the importance of tree genetic background in promoting associated biodiversity. We tested the effect of apple cultivar (plant genetic background) on the diversity and composition of the associated epiphytic bryophyte community across a total of seven cultivars in five productive East Anglian orchards where each orchard contained two cultivars. Data were collected from 617 individual trees, over 5 years. Species richness and community composition were significantly influenced by both orchard and cultivar. Differences among orchards explained 16% of the variation in bryophyte community data, while cultivar explained 4%. For 13 of the 41 bryophyte species recorded, apple cultivar was an important factor in explaining their distribution. While the effects of cultivar were small, we were able to detect them at multiple levels of analysis. We provide evidence that extended phenotypes act in productive as well as natural systems. With issues of food security ranking high on the international agenda, it is important to understand the impact of production regimes on associated biodiversity. Our results can inform mitigation of this potential conflict.  相似文献   

14.
Questions: Boreal forests along small streams are bryophyte diversity hotspots because they are moist, productive and relatively high pH. Do these factors also explain the large differences in species richness and species composition found among streamside sites? Do the species of species‐poor sites represent nested subsets of the species of more species‐rich sites? How do the results apply to conservation? Location: Forests along small streams in mid‐boreal Sweden. Methods: Survey of the flora of liverworts and mosses and habitat properties, including calculation of a pH‐index based on species indicator values, in 37 sites (1000‐m2 plots). Results: The number of bryophyte species per plot ranged from 34 to 125. Neither soil moisture nor basal area of trees (a proxy for productivity) correlated significantly with species richness and composition, whereas pH‐index and cover of boulders did. Species richness and composition were more strongly correlated with pH‐index for mosses than for liverworts. The richness and composition of bryophyte species most frequently found on moist ground, stream channel margins and, most unexpected, woody debris were all more strongly associated with the pH‐index than with other habitat properties. Although species composition was significantly nested, there was still some turnover of species along the first ordination axis. Conclusions To attain high numbers of species, streamside forests need to have boulders and at least pockets with higher soil and stream‐water pH. The number of Red list species was weakly correlated with total species richness and the most species‐rich sites contained many species found more in non‐forest habitats. Hence, bryophyte conservation in streamside forests should not focus on species‐rich sites but on the quality and quantity of substrate available for assemblages of forest species that are strongly disfavoured by forestry.  相似文献   

15.
Semi-natural pastures have rich plant and animal communities of high conservation value which depend on extensive management. As the area of such land decreases, abandoned semi-natural grasslands have been restored to re-establish biodiversity. Restoration schemes, which include thinning of woody plants and reintroduction of grazing, are mainly designed according to the responses of well-studied groups (such as vascular plants and birds). Weevils (Curculionidae) are a very diverse phytophagous beetle family. Here, we evaluated the restoration success of pastures for weevils (Curculionidae), by comparing their species diversity in abandoned, restored, and continuously grazed semi-natural pastures on 24 sites in central Sweden. Weevils were sampled by sweep-netting. We recorded 3019 weevil individuals belonging to 104 species. There was no statistically significant difference in species numbers between the pasture management treatments. However, weevil species composition of abandoned pastures differed from those in restored and continuously managed pastures, but there was no significant difference in community composition between restored and continuously grazed pastures. The abandoned sites tended to be dominated by polyphagous species, whereas the grazed sites contained more monophagous and oligophagous species. The number of weevil species was positively related to understory vegetation height and connectivity to other semi-natural grasslands and negatively related to the cover of trees and shrubs in the pastures. We conclude that restoration of abandoned semi-natural pastures is a good approach to restore weevil communities. To maintain a species rich weevil community, pastures should be managed to be relatively open, but still have patches of tall field-layer vegetation. Restoration and conservation measures should primarily be targeted on regions and landscapes where a high proportion of semi-natural grassland still remains.  相似文献   

16.
Extensively managed semi-natural grasslands represent species-rich habitats and therefore play a key role for the maintenance of biodiversity in agricultural areas. In marginal and poorly accessible areas, the traditional management of grassland is frequently abandoned, which leads to the spread of forest. In Southern Switzerland, terraced vineyards (a special grassland type) and terraced grasslands are part of the cultural heritage and local biodiversity hotspots. Yet, many of them are overgrown by forest. In the past years, several abandoned terraced vineyards and grasslands have been restored by removing the forest, rebuilding the walls and re-introducing the traditional management. We examined restoration success by assessing plant species richness, diversity and species composition in both the aboveground vegetation and soil seed bank in (1) restored, (2) abandoned for 25–50 years, and (3) permanently used areas of six terraced vineyards and six terraced grasslands. Plant species richness and diversity were reduced and species composition altered in the aboveground vegetation of abandoned vineyards and grasslands compared to the permanently used and restored ones. However, species richness, Shannon-diversity and species composition of the aboveground vegetation did not differ between restored and permanently used areas, indicating a successful restoration of the vegetation 10–15 years after restoration. In abandoned vineyards, species richness of plants emerging from the soil seed bank was slightly higher than in permanently used and restored vineyards. No difference in seedling species richness was found between abandoned, permanently used and restored terraced grasslands. Our results showed that the soil seed bank played a minor role for the re-establishment of the above-ground vegetation. We assume that the large species pool in the surroundings and the presence of dispersal vectors are essential for the successful passive restoration of abandoned grassland in this region.  相似文献   

17.
Management of ancient trees constitutes a major dilemma in the conservation of associated biodiversity. While traditional methods are often advocated, such practices may incur considerable costs and their effects have rarely been scientifically evaluated. We compared the communities of lichenized fungi, non-lichenized fungi, and bryophytes among equal number of coarse previously pollarded and unmanaged trees (n = 340). On 400 Ulmus glabra and 280 Fraxinus excelsior trees at 62 sites in Norway, we found 209 lichenized fungi, 128 non-lichenized fungi, and 115 bryophytes. Pollarded trees were richer in microhabitats than unmanaged trees and had significantly higher richness of bryophytes (ash) and non-lichenized fungi (ash and elm), the latter increasing with the availability of dead wood, cavities and coarse bark structure in pollarded trees. Further, the average total number of red-listed species, and red-listed lichenized fungi separately, were significantly higher on pollarded versus unmanaged trees, with diversity related to trunk circumference, depth of bark fissures and number of cavities. Our results underline the importance of microhabitats associated with old trees, but we cannot establish with certainty the importance of pollarding per se. Since we did not find any negative effect of canopy cover for community diversity, we assume that old trees with rich epiphytic communities can develop without management intervention. The high share (37 out of 49) of red-listed species occurring on unmanaged trees, and the fact that 11 red-listed species were found exclusively on unmanaged trees, may further indicate that unmanaged trees can with time replace the ancient pollarded trees as habitats for rich cryptogamic communities.  相似文献   

18.
Alpine grasslands in the Southern Carpathian Mts, Romania, harbour an extraordinarily high diversity of plants and invertebrates, including Carpathic endemics. In the past decades, intensive sheep grazing has caused a dramatic decrease in biodiversity and even led to eroded soils at many places in the Carpathians. Because of limited food resources, sheep are increasingly forced to graze on steep slopes, which were formerly not grazed by livestock and are considered as local biodiversity hotspots. We examined species richness, abundance and number of endemic vascular plants and terrestrial gastropods on steep slopes that were either grazed by sheep or ungrazed by livestock in two areas of the Southern Carpathians. On calcareous soils in the Bucegi Mts, a total of 177 vascular plant and 19 gastropod species were recorded. Twelve plant species (6.8%) and three gastropod species (15.8%) were endemic to the Carpathians. Grazed sites had lower plant and gastropod species richness than ungrazed sites. Furthermore, grazed sites harboured fewer gastropod species endemic to the Carpathians than ungrazed sites. On acid soils in the Fagaras Mts, a total of 96 vascular plant and nine gastropod species were found. In this mountain area, however, grazed and ungrazed sites did not differ in species richness, abundance and number of endemic plant and gastropod species. Our findings confirm the high biodiversity of grasslands on steep slopes in the Southern Carpathian Mts and caution against increasing grazing pressure in these refuges for relic plants and gastropods as well as for other invertebrates.  相似文献   

19.
Recent studies indicate that species richness can enhance the ability of plant assemblages to support multiple ecosystem functions. To understand how and when ecosystem services depend on biodiversity, it is valuable to expand beyond experimental grasslands. We examined whether plant diversity improves the capacity of agroecosystems to sustain multiple ecosystem services—production of wood and forage, and two elements of soil formation—in two types of smallholder fallows in western Kenya. In 18 grazed and 21 improved fallows, we estimated biomass and quantified soil organic carbon, soil base cations, sand content, and soil infiltration capacity. For four ecosystem functions (wood biomass, forage biomass, soil base cations, steady infiltration rates) linked to the focal ecosystem services, we quantified ecosystem service multi-functionality as (1) the proportion of functions above half-maximum, and (2) mean percentage excess above mean function values, and assessed whether plant diversity or environmental favorability better predicted multi-functionality. In grazed fallows, positive effects of plant diversity best explained the proportion above half-maximum and mean percentage excess, the former also declining with grazing intensity. In improved fallows, the proportion above half-maximum was not associated with soil carbon or plant diversity, while soil carbon predicted mean percentage excess better than diversity. Grazed fallows yielded stronger evidence for diversity effects on multi-functionality, while environmental conditions appeared more influential in improved fallows. The contrast in diversity-multi-functionality relationships among fallow types appears related to differences in management and associated factors including disturbance and species composition. Complementary effects of species with contrasting functional traits on different functions and multi-functional species may have contributed to diversity effects in grazed fallows. Biodiversity and environmental favorability may enhance the capacity of smallholder fallows to simultaneously provide multiple ecosystem services, yet their effects are likely to vary with fallow management.  相似文献   

20.
An efficient method for estimating bryophyte diversity in forest stands must consider more than just the dominant forest mesohabitat. We compared two methodologies commonly used for estimating diversity in forest ecosystems. Floristic habitat sampling (FHS) utilizes stratification of all forest mesohabitats, which includes the natural diversity of microhabitats found within and stratifies a mosaic of mesohabitats (e.g. forest, streams, seeps, and cliffs) and microhabitats (e.g. rocks logs, etc.) that are often not considered in forest research projects that use plot sampling to estimate species diversity. In Canadian cedar hemlock forest, FHS methodology recorded more than twice as many bryophyte species as plot sampling (PS). A comparison of the dominant forest mesohabitat concluded that plot sampling was not as efficient as FHS in estimating bryophyte diversity and that plot sampling can result in different interpretations of species diversity. Rare species ordination of stands sampled using FHS showed strong clustering of sites with respect to biogeoclimatic zones and age since the last major disturbance (fire or logging) as compared with rare species ordinations from PS data, which showed no delineation of stands along temporal gradients. Plot sampling has many useful applications in ecology, but floristic habitat sampling is more efficient for quantifying overall bryophyte diversity. FHS provides an excellent way to record a comprehensive list of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号