首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human CD45 gene encodes a protein–tyrosine phosphatase that exhibits differential isoform expression in resting and activated T cells due to alternative splicing of three variable exons. Previously, we have used biochemical methods to identify two regulatory proteins, hnRNP L and PSF, which contribute to the activation-induced skipping of CD45 via the ESS1 regulatory element in variable exon 4. Here we report the identification of a third CD45 regulatory factor, hnRNP L-like (hnRNP LL), via a cell-based screen for clonal variants that exhibit an activation-like phenotype of CD45 splicing even under resting conditions. Microarray analysis of two splicing-altered clones revealed increased expression of hnRNP LL relative to wild-type cells. We further demonstrate that both the expression of hnRNP LL protein and its binding to ESS1 are up-regulated in wild-type cells upon activation. Forced overexpression of hnRNP LL in wild-type cells results in an increase in exon repression, while knock-down of hnRNP LL eliminates activation-induced exon skipping. Interestingly, analysis of the binding of hnRNP L and hnRNP LL to mutants of ESS1 reveals that these proteins have overlapping, but distinct binding requirements. Together, these data establish that hnRNP LL plays a critical and unique role in the signal-induced regulation of CD45 and demonstrate the utility of cell-based screens for the identification of novel splicing regulatory factors.  相似文献   

3.
Alternative mRNA splicing patterns are determined by the combinatorial control of regulator proteins and their target RNA sequences. We have recently characterized human hnRNP L as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To systematically identify hnRNP L target genes on a genome-wide level, we have combined splice-sensitive microarray analysis and an RNAi-knockdown approach. As a result, we describe 11 target genes of hnRNP L that were validated by RT-PCR and that represent several new modes of hnRNP L-dependent splicing regulation, involving both activator and repressor functions: first, intron retention; second, inclusion or skipping of cassette-type exons; third, suppression of multiple exons; and fourth, alternative poly(A) site selection. In sum, this approach revealed a surprising diversity of splicing-regulatory processes as well as poly(A) site selection in which hnRNP L is involved.  相似文献   

4.
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is expressed in a variety of cell types and is implicated in carcinogenesis. Alternative splicing of CEACAM1 pre-mRNA generates two cytoplasmic domain splice variants characterized by the inclusion (L-isoform) or exclusion (S-isoform) of exon 7. Here we show that the alternative splicing of CEACAM1 pre-mRNA is regulated by novel cis elements residing in exon 7. We report the presence of three exon regulatory elements that lead to the inclusion or exclusion of exon 7 CEACAM1 mRNA in ZR75 breast cancer cells. Heterologous splicing reporter assays demonstrated that the maintenance of authentic alternative splicing mechanisms were independent of the CEACAM1 intron sequence context. We show that forced expression of these exon regulatory elements could alter CEACAM1 splicing in HEK-293 cells. Using RNA affinity chromatography, three members of the heterogeneous nuclear ribonucleoprotein family (hnRNP L, hnRNP A1, and hnRNP M) were identified. RNA immunoprecipitation of hnRNP L and hnRNP A1 revealed a binding motif located central and 3' to exon 7, respectively. Depletion of hnRNP A1 or L by RNAi in HEK-293 cells promoted exon 7 inclusion, whereas overexpression led to exclusion of the variable exon. By contrast, overexpression of hnRNP M showed exon 7 inclusion and production of CEACAM1-L mRNA. Finally, stress-induced cytoplasmic accumulation of hnRNP A1 in MDA-MB-468 cells dynamically alters the CEACAM1-S:CEACAM1:L ratio in favor of the l-isoform. Thus, we have elucidated the molecular factors that control the mechanism of splice-site recognition in the alternative splicing regulation of CEACAM1.  相似文献   

5.
RBFOX1 and RBFOX2 are alternative splicing factors that are predominantly expressed in the brain and skeletal muscle. They specifically bind the RNA element UGCAUG, and regulate alternative splicing positively or negatively in a position-dependent manner. The molecular basis for the position dependence of these and other splicing factors on alternative splicing of their targets is not known. We explored the mechanisms of RBFOX splicing activation and repression using an MS2-tethering assay. We found that the Ala/Tyr/Gly-rich C-terminal domain is sufficient for exon activation when tethered to the downstream intron, whereas both the C-terminal domain and the central RRM are required for exon repression when tethered to the upstream intron. Using immunoprecipitation and mass spectrometry, we identified hnRNP H1, RALY, and TFG as proteins that specifically interact with the C-terminal domain of RBFOX1 and RBFOX2. RNA interference experiments showed that hnRNP H1 and TFG modulate the splicing activity of RBFOX1/2, whereas RALY had no effect. However, TFG is localized in the cytoplasm, and likely modulates alternative splicing indirectly.  相似文献   

6.
Splicing of fibroblast growth factor receptor 2 (FGFR2) alternative exons IIIb and IIIc is regulated by the auxiliary RNA cis-element ISE/ISS-3 that promotes splicing of exon IIIb and silencing of exon IIIc. Using RNA affinity chromatography, we have identified heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a splicing regulatory factor that binds to ISE/ISS-3 in a sequence-specific manner. Overexpression of hnRNP M promoted exon IIIc skipping in a cell line that normally includes it, and association of hnRNP M with ISE/ISS-3 was shown to contribute to this splicing regulatory function. Thus hnRNP M, along with other members of the hnRNP family of RNA-binding proteins, plays a combinatorial role in regulation of FGFR2 alternative splicing. We also determined that hnRNP M can affect the splicing of several other alternatively spliced exons. This activity of hnRNP M included the ability not only to induce exon skipping but also to promote exon inclusion. This is the first report demonstrating a role for this abundant hnRNP family member in alternative splicing in mammals and suggests that this protein may broadly contribute to the fidelity of splice site recognition and alternative splicing regulation.  相似文献   

7.
Alternative splicing is typically controlled by complexes of regulatory proteins that bind to sequences within or flanking variable exons. The identification of regulatory sequence motifs and the characterization of sequence motifs bound by splicing regulatory proteins have been essential to predicting splicing regulation. The activation-responsive sequence (ARS) motif has previously been identified in several exons that undergo changes in splicing upon T cell activation. hnRNP L binds to this ARS motif and regulates ARS-containing exons; however, hnRNP L does not function alone. Interestingly, the proteins that bind together with hnRNP L differ for different exons that contain the ARS core motif. Here we undertake a systematic mutational analysis of the best characterized context of the ARS motif, namely the ESS1 sequence from CD45 exon 4, to understand the determinants of binding specificity among the components of the ESS1 regulatory complex and the relationship between protein binding and function. We demonstrate that different mutations within the ARS motif affect specific aspects of regulatory function and disrupt the binding of distinct proteins. Most notably, we demonstrate that the C77G polymorphism, which correlates with autoimmune disease susceptibility in humans, disrupts exon silencing by preventing the redundant activity of hnRNPs K and E2 to compensate for the weakened function of hnRNP L. Therefore, these studies provide an important example of the functional relevance of combinatorial function in splicing regulation and suggest that additional polymorphisms may similarly disrupt function of the ESS1 silencer.  相似文献   

8.
CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4-6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4-6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons.  相似文献   

9.
10.
The dopamine D2 receptor (D2R) plays a crucial role in the regulation of diverse key physiological functions, including motor control, reward, learning, and memory. This receptor is present in vivo in two isoforms, D2L and D2S, generated from the same gene by alternative pre-mRNA splicing. Each isoform has a specific role in vivo, underlining the importance of a strict control of its synthesis, yet the molecular mechanism modulating alternative D2R pre-mRNA splicing has not been completely elucidated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a key molecule controlling D2R splicing. We show that binding of hnRNP M to exon 6 inhibited the inclusion of this exon in the mRNA. Importantly, the splicing factor Nova-1 counteracted hnRNP M effects on D2R pre-mRNA splicing. Indeed, mutations of the putative Nova-1-binding site on exon 6 disrupted Nova-1 RNA assembly and diminished the inhibitory effect of Nova-1 on hnRNP M-dependent exon 6 exclusion. These results identify Nova-1 and hnRNP M as D2R pre-mRNA-binding proteins and show their antagonistic role in the alternative splicing of D2R pre-mRNA.  相似文献   

11.
We have recently identified an intronic polymorphic CA-repeat region in the human endothelial nitric oxide synthase (eNOS) gene as an important determinant of the splicing efficiency, requiring specific binding of hnRNP L. Here, we analyzed the position requirements of this CA-repeat element, which revealed its potential role in alternative splicing. In addition, we defined the RNA binding specificity of hnRNP L by SELEX: not only regular CA repeats are recognized with high affinity but also certain CA-rich clusters. Therefore, we have systematically searched the human genome databases for CA-repeat and CA-rich elements associated with alternative 5' splice sites (5'ss), followed by minigene transfection assays. Surprisingly, in several specific human genes that we tested, intronic CA RNA elements could function either as splicing enhancers or silencers, depending on their proximity to the alternative 5'ss. HnRNP L was detected specifically bound to these diverse CA elements. These data demonstrated that intronic CA sequences constitute novel and widespread regulatory elements of alternative splicing.  相似文献   

12.
13.
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two majorcis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3 splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on thecis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.  相似文献   

14.
15.
Use of minigene systems to dissect alternative splicing elements   总被引:4,自引:0,他引:4  
Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. The splicing efficiency of individual exons is determined by multiple features involving gene architecture, a variety of cis-acting elements within the exons and flanking introns, and interactions with components of the basal splicing machinery (called the spliceosome) and auxiliary regulatory factors which transiently co-assemble with the spliceosome. Both alternative and constitutive exons are recognized by multiple weak protein:RNA interactions and different exons differ in the interactions which are determinative for exon usage. Alternative exons are often regulated according to cell-specific patterns and regulation is mediated by specific sets of cis-acting elements and trans-acting factors. Transient expression of minigenes is a commonly used in vivo assay to identify the intrinsic features of a gene that control exon usage, identify specific cis-acting elements that control usage of constitutive and alternative exons, identify cis-acting elements that control cell-specific usage of alternative exons, and once regulatory elements have been identified, to identify the trans-acting factors that bind to these elements and modulate splicing. This chapter describes approaches and strategies for using minigenes to define the cis-acting elements that determine splice site usage and to identify and characterize the trans-acting factors that bind to these elements and regulate alternative splicing.  相似文献   

16.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

17.
Some exons contain exon splicing silencers. Their activity is frequently balanced by that of splicing enhancers, and this is important to ensure correct relative levels of alternatively spliced mRNAs. Using an immunoprecipitation and UV-cross-linking assay, we show that RNA molecules containing splicing silencers from the human immunodeficiency virus type 1 tat exon 2 or the human fibroblast growth factor receptor 2 K-SAM exon bind to hnRNP A1 in HeLa cell nuclear extracts better than the corresponding RNA molecule without a silencer. Two different point mutations which abolish the K-SAM exon splicing silencer’s activity reduce hnRNP A1 binding twofold. Recruitment of hnRNP A1 in the form of a fusion with bacteriophage MS2 coat protein to a K-SAM exon whose exon splicing silencer has been replaced by a coat binding site efficiently represses splicing of the exon in vivo. Recruitment of only the glycine-rich C-terminal domain of hnRNP A1, which is capable of interactions with other proteins, is sufficient to repress exon splicing. Our results show that hnRNP A1 can function to repress splicing, and they suggest that at least some exon splicing silencers could work by recruiting hnRNP A1.  相似文献   

18.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

19.
Alternative splicing is regulated by splicing factors that modulate splice site selection. In some cases, however, splicing factors show antagonistic activities by either activating or repressing splicing. Here, we show that these opposing outcomes are based on their binding location relative to regulated 5′ splice sites. SR proteins enhance splicing only when they are recruited to the exon. However, they interfere with splicing by simply relocating them to the opposite intronic side of the splice site. hnRNP splicing factors display analogous opposing activities, but in a reversed position dependence. Activation by SR or hnRNP proteins increases splice site recognition at the earliest steps of exon definition, whereas splicing repression promotes the assembly of nonproductive complexes that arrest spliceosome assembly prior to splice site pairing. Thus, SR and hnRNP splicing factors exploit similar mechanisms to positively or negatively influence splice site selection.  相似文献   

20.
Circular RNAs (circRNAs) are a class of noncoding RNAs, generated from pre-mRNAs by circular splicing of exons and functionally largely uncharacterized. Here we report on the design, expression, and characterization of artificial circRNAs that act as protein sponges, specifically binding and functionally inactivating hnRNP (heterogeneous nuclear ribonucleoprotein) L. HnRNP L regulates alternative splicing, depending on short CA-rich RNA elements. We demonstrate that designer hnRNP L-sponge circRNAs with CA-repeat or CA-rich sequence clusters can efficiently and specifically modulate splicing-regulatory networks in mammalian cells, including alternative splicing patterns and the cellular distribution of a splicing factor. This new strategy can in principle be applied to any RNA-binding protein, opening up new therapeutic strategies in molecular medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号