首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylated mercury (MeHg) can be produced by all microbes possessing the genes hgcA and hgcB, which can include sulfate-reducing bacteria (SRB), iron-reducing bacteria (FeRB), methane-producing archaea (MPA), and other anaerobic microbes. These microbial groups compete for substrates, including hydrogen and acetate. When sulfate is in excess, SRB can outcompete other anaerobic microbes. However, low concentrations of sulfate, which often occur in stream sediments, are thought to reduce the relative importance of SRB. Although SRB are regarded as the primary contributors of MeHg in many aquatic environments, their significance may not be universal, and stream sediments are poorly studied with respect to microbial Hg methylation. We evaluated suppression of methanogenesis by SRB and the potential contributions from SRB, MPA and other MeHg producing microbes (including FeRB) to the production of MeHg in stream sediments from the North Carolina Piedmont region. Lower methanogenesis rates were observed when SRB were not inhibited, however, application of a sulfate-reduction inhibitor stimulated methanogenesis. Greater MeHg production occurred when SRB were active. Other MeHg producing microbes (i.e., FeRB) contributed significantly less MeHg production than SRB. MPA produced MeHg in negligible amounts. Our results suggest that SRB are responsible for the majority of MeHg production and suppress methanogenesis in mid-order stream sediments, similar to other freshwater sediments. Further investigation is needed to evaluate the generality of these findings to streams in other regions, and to determine the mechanisms regulating sulfate and electron acceptor availability and other potential factors governing Hg methylation and methane production in stream sediments.  相似文献   

2.
The paper’s objective was to estimate weekly Hg intake from fish meals based on intervention research. Total Hg (THg) concentrations in blood and hair samples collected from men (n = 67) from an intervention study as well as muscular tissues of fresh and after heat-treating fish were determined using the thermal decomposition amalgamation atomic absorption spectrometry method (TDA-AAS) using direct mercury analyzer (DMA-80). The mean of the estimated weekly intake (EWI) was estimated at 0.62 μg/kg bw/week in the range 0.36–0.96 μg/kg body weight (bw) /week through the consumption of 4 edible marine fish species every day (for 10 days) by the participants from the intervention research in Lodz, Poland. The Hg intake in the volunteers in our intervention study accounted for 38.6% of the provisional tolerable weekly intake (PTWI) (1.6 μg/kg bw, weekly) value. The average Hg concentration in the analyzed fish ranged from 0.018 ± 0.006 mg/kg wet weight (Gadus chalcogrammus) to 0.105 ± 0.015 mg/kg wet weight (Macruronus magellanicus). The results for the average consumers were within PTWI of methylmercury (MeHg). Moreover, the average concentration of Hg in the selected fish after heat treatment did not exceed the maximum permitted concentrations for MeHg (MPCs = 0.5 mg/kg wet weight) in food set by the European Commission Regulation (EC/1881/2006). Hence, the risk of adverse effects of MeHg for the participants is substantially low.  相似文献   

3.
Many bacteria belonging to the order Rhizobiales have fixNOQP genes which encode cytochrome oxidase with high affinity to oxygen required for oxidative phosphorylation in microaerophilic conditions. There is one copy of the identified fixNOQP operon in ancestral forms of rhizobia (Bradyrhizobium), as well as in their putative evolutionary predecessors (bacteria related to Rhodopseudomonas). At the same time, forms deeply specialized in symbiosis (Rhizobium leguminosarum, Sinorhizobium meliloti) have multiple (2–3) copies, some of them have a high similarity (>90%) to fixNOQP genes of Bradyrhizobium and Rhodopseudomonas, and others have only 30–50% similarity. Two divergent copies fixNOQP are detected in Tardiphaga, which is a representative of the Bradyrhizobiaceae family, lacking the ability to fix N2 (lack of nif genes encoding the synthesis of nitrogenase) and to induce the formation of nodules on legumes roots (lack of nod genes encoding the synthesis of signal Nod factors activating symbiosis development). The presence of Tardiphaga in nodule bacterial communities from a range of legumes, including Vavilovia formosa (relic representative of the tribe Fabeae, for which R. leguminosarum bv. viciae is the main microsymbiont), suggests that the ancestral gene duplication and subsequent divergence of fixNOQP operon in bacteria related to Tardiphaga opened the possibility of wide dissemination of functionally different copies of this cluster among symbiotically active forms of Rhizobiales. It is possible that the acquisition of fixNOQP genes determines adaptation of bacteria to microaerophilic niches not only in plants nodules but also in their environment (the rhizosphere, rhizoplane, internal portions of soil aggregates).  相似文献   

4.
A new method for the construction of translationally coupled operons in a bacterial chromosome was developed on the basis of the recombineering approach. The method includes the in vitro construction of an artificial operon with an efficiently translated proximal cistron, its insertion into the Escherichia coli chromosome, the modification of the operon via Red-driven insertion of a special “Junction” with an excisable selective marker into the intercistronic region of the initial operon, and the excision of the marker. The Junction structure was designed and tested. The Junction consists of three components. The first component is the E. coli rplC-rplD intercistronic region and serves for placing the TAA codon of the proximal gene in the SD sequence (TAAGGAG) of rplD. The second component is the Cm R gene flanked by λattL/R sites in such a fashion that the residual λattB site after λInt/Xis-driven excision of the marker does not contain termination codons in frame with ATG of rplD. The third component is the E. coli trpE-trpD intercistronic region which is added so that TGA of trpE acts a termination codon of the new open reading frame (ORF), while the overlapping (TGATG) ATG of trpD is in the position of the initiation codon of the distal gene of the original operon. The general design of the Junction provides the conversion of the original two-cistron operon into a three-cistron operon with translationally coupled genes, where the coupling of the artificial ORF (rplD’-λattB-’trpE) with the proximal gene is due to the rplC-rplD intercistronic region and its coupling with the distal gene is due to trpE-trpD. The strategy was experimentally implemented to construct an artificial operon Ptac-aroG4-serA5, where the expression the distal serA5 gene was optimized owing to translational coupling in a three-cistron operon.  相似文献   

5.
Concentrations of toxic metals viz. mercury (Hg), cadmium (Cd) and lead (Pb) were evaluated in four species of fishes (Sardinella longiceps, Selaroides leptolepis, Epinephelus quoyanus and Lethrinus lentjan), one species of shrimp (Penaeus semisulcatus) and one species of crab (Portunus sanguinolentus) sampled from Thoothukudi, Keelakarai and Veerapandian pattinam of Gulf of Mannar, Southeast coast of India. Results revealed accumulation of these metals in the following order Hg > Cd > Pb. Hg concentration was found to be higher in Po. sanguinolentus followed by E. quoyanus, Pe. semisulcatus and L. lentjan however, the same was absent in Sa. longiceps and Se. leptolepis. Cd concentration was recorded in decreasing order in Po. sanguinolentus > Pe. semisulcatus > L. lentjen > E. quoyanus > Sa. longiceps > Se. leptolepis. Pb was detectable only in four species. Results of One-way ANOVA revealed significant variations (p < 0.05) in accumulation of Cd in Sa. longiceps, Se. leptolepis and Pe. semisulcatus and Hg in E. quoyanus, L. lentjan and Po. sanguinolentus. Variations noted in Pb were not statistically significant throughout.  相似文献   

6.
7.
The conserved two-domain ribosomal protein (r-protein) L1 is a structural part of the L1 stalk of the large ribosomal subunit and regulates the translation of the operon that comprises its own gene. The regulatory properties of the bacterial r-protein L1 have only been studied in detail for Escherichia coli; however, there were no such studies for other bacteria, in particular, Thermus thermophilus and Thermotoga maritima, which are more evolutionarily ancient. It is known that domain I of the r-protein L1 might have regulatory properties of the whole protein. The aim of this study was to identify regulatory sites on the mRNA of T. thermophilus and T. maritima that interact with r-proteins L1, as well as with their domains I from the same organisms. An analysis of the mRNA of the L11 operon T. thermophilus showed the presence of one potential binding site of the L1 r-protein, two such regions were found also in the mRNA sequence of the L11 operon of T. maritima. The dissociation constants for the L1 proteins from T. thermophilus and T. maritima and their domains I with mRNA fragments from the same organisms that contain the supposed L1-binding sites were determined by surface plasmon resonance. It has been shown that the ribosomal proteins L1 as their domains I bind specific fragments of mRNA from the same organisms that may suggest regulatory activity of the L1 protein in the T. thermophilus and T. maritima and conservatism of the principles of L1-RNA interactions.  相似文献   

8.
Avirulent B. pertussis bacteria containing IS elements in the bvgAS operon were detected during the study of whooping cough patients and bacilli carriers. The present work is devoted to the study of the accumulation dynamics and the mechanisms of generation of persistent forms of the B. pertussis bacteria in lower monkeys as the most adequate model for extrapolation of the experiment results to humans. By means of the real-time PCR method, it was established that the B. pertussis bacteria lived more than three months in the upper respiratory tract after a single intranasal monkey infection; the period was reduced to 14–28 days during repeated infection. An increase in the portion of B. pertussis Bvg mutants in the population to tens of percent from the total number of registered bacteria was registered. The experimental confirmation of the development and accumulation of avirulent B. pertussis Bvg mutants during the development of the infectious process was obtained. Further study of the composition of the B. pertussis persistent bacteria population at different stages of the disease will make it possible to formulate new approaches to the whooping cough diagnostics and prevention and creation of fundamentally new drugs.  相似文献   

9.
L-Arginine is an indispensable amino acid, as it is required for normal growth of microbes, plants and animals (Szende et al., Cancer Cell Int 1:1475–1480, 2001). Arginine deiminase is the first enzyme of arginine deiminase (ADI) pathway, which catalyzes the conversion of arginine to citrulline and ammonia in an irreversible reaction. Lactic acid bacteria isolated from dairy products were investigated for their ability to hydrolyze arginine. Citrulline production in many LAB strains suggests that the arginine metabolism takes place via the arginine deiminase pathway. The highest arginine deiminase specific activity (0.27 IU/mg) was reported in isolate GR7, which was characterized morphologically, biochemically and by 16S rRNA gene sequencing as Enterococcus faecium. Genetic organization of the ADI operon in E. faecium GR7 was further studied using various molecular biology and computational techniques. Sequence analysis revealed that the genes involved in arginine catabolism are clustered together in an operon (3,906 bp) consisting of the genes arcA (arginine deiminase), arcB (ornithine transcarbamylase), and arcC (carbamate kinase), which are localized on the anti-sense strand of genomic DNA. Nucleotide sequence analysis revealed three open reading frames (ORFs) that were arranged contiguously and transcribed in the same direction, as an apparent operon. The genes followed the order arcC, arcB, arcA, which differs from that found in other microorganisms. The information obtained in this study provides the basis for testing the potential of arginine catabolism to control the emergence of arginine auxotrophic tumors.  相似文献   

10.

Objectives

To deregulate the purine operon of the purine biosynthetic pathway and optimize energy generation of the respiratory chain to improve the yield of guanosine in Bacillus amyloliquefaciens XH7.

Results

The 5′-untranslated region of the purine operon, which contains the guanine-sensing riboswitch, was disrupted. The native promoter Pw in B. amyloliquefaciens XH7 was replaced by different strong promoters. Among the promoter replacement mutants, XH7purE::P41 gave the highest guanosine yield (16.3 g/l), with an increase of 23% compared with B. amyloliquefaciens XH7. The relative expression levels of the purine operon genes (purE, purF, and purD) in the XH7purE::P41 mutant were upregulated. The concentration of inosine monophosphate (IMP), the primary intermediate in the purine pathway, was also significantly increased in the XH7purE::P41 mutant. Combined modification of the low-coupling branched respiratory chains (cytochrome bd oxidase) improved guanosine production synergistically. The final guanosine yield in the XH7purE::P41△cyd mutant increased by 41% to 19 g/l compared with B. amyloliquefaciens XH7.

Conclusion

The combined modification strategy used in this study is a novel approach to improve the production of guanosine in industrial bacterial strains.
  相似文献   

11.
Tobacco smoke contains various toxic heavy metals that individuals are exposed to when they smoke. Despite the presence of heavy metals in tobacco smoke, the relationship between smoking and the accumulation of toxic metals in pregnant women after long-term exposure remains under discussion. We examined the association between long-term exposure to tobacco smoke and the accumulation of toxic metals in the hair of female participants. Our study recruited 252 women from the Shanxi and Hebei provinces of Northern China; these participants were self-reported non-active smokers, and had previously delivered healthy babies without birth defects. Scalp hair was collected and analyzed for nicotine and cotinine and five potentially toxic metals (specifically, silver, chromium, cadmium, mercury, and lead). Our results showed significant positive correlations between cotinine and four metals, including silver (r?=?0.369, p?<?0.001), cadmium (r?=?0.185, p?<?0.01), mercury (r?=?0.161, p?<?0.05), and lead (r?=?0.243, p?<?0.001). Significant positive correlations were also found between nicotine and three metals—specifically silver (r?=?0.331, p?<?0.001), cadmium (r?=?0.176, p?<?0.01), and lead (r?=?0.316, p?<?0.001). A logistic regression model showed significant associations between cotinine and potentially toxic metals including mercury, silver, and lead (with or without adjusting for potential confounders). We thus conclude that long-term passive smoking could potentially increase the exposure level of toxic metals including lead, silver, and mercury in our study, which are especially harmful for pregnant women and their unborn fetus.  相似文献   

12.
13.

Background

Histidine biosynthesis is one of the best characterized anabolic pathways. There is a large body of genetic and biochemical information available, including operon structure, gene expression, and increasingly larger sequence databases. For over forty years this pathway has been the subject of extensive studies, mainly in Escherichia coli and Salmonella enterica, in both of which details of histidine biosynthesis appear to be identical. In these two enterobacteria the pathway is unbranched, includes a number of unusual reactions, and consists of nine intermediates; his genes are arranged in a compact operon (hisGDC [NB]HAF [IE]), with three of them (hisNB, hisD and hisIE) coding for bifunctional enzymes. We performed a detailed analysis of his gene fusions in available genomes to understand the role of gene fusions in shaping this pathway.

Results

The analysis of HisA structures revealed that several gene elongation events are at the root of this protein family: internal duplication have been identified by structural superposition of the modules composing the TIM-barrel protein.Several his gene fusions happened in distinct taxonomic lineages; hisNB originated within γ-proteobacteria and after its appearance it was transferred to Campylobacter species (ε-proteobacteria) and to some Bacteria belonging to the CFB group. The transfer involved the entire his operon. The hisIE gene fusion was found in several taxonomic lineages and our results suggest that it probably happened several times in distinct lineages.Gene fusions involving hisIE and hisD genes (HIS4) and hisH and hisF genes (HIS7) took place in the Eukarya domain; the latter has been transferred to some δ-proteobacteria.

Conclusion

Gene duplication is the most widely known mechanism responsible for the origin and evolution of metabolic pathways; however, several other mechanisms might concur in the process of pathway assembly and gene fusion appeared to be one of the most important and common.
  相似文献   

14.
Hydroelectric reservoirs can stratify, producing favorable conditions for mercury methylation in the hypolimnion. The methylmercury (MeHg) can be exported downstream, increasing its bioavailability below the dam. Our objective was to assess the mercury levels in plankton, suspended particulate matter (SPM) and fish collected upstream (UP) and downstream (DW) from the Reservatório de Samuel dam, an Amazonian reservoir that stratifies during half of the year. Mercury concentrations in both SPM and plankton were similar between the two sites, which could indicate there are no conditions favoring methylation at the moment of sampling (absence of stratification). Almost all mercury found in the muscle of fishes was in organic form, and differences of mercury levels between sites were dependent on the fishes trophic level. Herbivores showed similar mean organic mercury levels (UP = 117 μg g?1; DW = 120 μg g?1; n = 12), whereas omnivores (UP = 142 μg g?1; DW = 534 μg g?1; n = 27) and carnivores (UP = 545 μg g?1; DW = 1,366 μg g?1; n = 69) showed significantly higher values below the dam. The absence of a reservoir effect in herbivores is expected, since they feed on grassy vegetation, near the riverbanks, which is not much influenced by mercury in aquatic systems. On the other hand, the higher mercury levels below the dam observed for omnivores and carnivores suggest a possible influence of the reservoir since they feed on items that could be contaminated by MeHg exported from upstream. The results highlight the necessity of assessing areas downstream of reservoirs.  相似文献   

15.
16.
Plasmid pBS501 was detected in the strain Comamonas sp. BS501. This plasmid specifies high level of induced resistance (5 mM) to cobalt/nickel both in the host strain and in related strains C. testosteroni B-1241 and C. acidovorans B-1251. Hybridization analysis revealed a homology of pBS501 restriction fragments with the only well-characterized operon cnrXYHCBAT that resides in plasmid pMOL28 from Cupriavidus metallidurans CH34. Essential differences in the structural organization of the cobalt/nickel resistance determinant were found between plasmid pBS501 and the cnr operon.  相似文献   

17.
Resveratrol exerts several pharmacological activities, including anti-cancer, anti-inflammatory, cardioprotective, or antioxidant effects. However, due to its occurrence in plants more in glycosidic form as piceid, the bioavailability and bioactivity are limited. The enzymatic potential of probiotics for the transformation of piceid to resveratrol was elucidated. Cell extract from Bifidobacteria (B.) infantis, B. bifidum, Lactobacillus (L.) casei, L. plantarum, and L. acidophilus was evaluated for their effect in this bioconversion using high-performance liquid chromatography (HPLC) as analytical tool. Cell extract of B. infantis showed the highest effect on the deglycosylation of piceid to resveratrol, already after 30 min. Cell extracts of all other tested strains showed a significant biotransformation with no further metabolization of resveratrol. The conversion of piceid to resveratrol is of importance to increase bioavailability and bioactivity as shown for anti-inflammation in this study. Cell extracts from probiotics, especially from B. infantis, may be added to piceid containing products, for achieving higher biological effects caused by the bioactivity of resveratrol or by health promoting of the probiotics. These findings open a new perspective of novel combination of cell extracts from probiotics and piceid, in health-promoting pharmaceutical and food products.  相似文献   

18.
Strain Pseudomonas chlororaphis 449, an antagonist of a broad spectrum of phytopathogenic microorganisms isolated from the maize rhizosphere, was shown to produce three phenazine antibiotics: phenazine-1-carboxylic acid (PCA), 2-hydroxylphenazine-1-carboxylic acid (2-OH-PCA), and 2-hydroxylphenazine (2-OH-PHZ). Two Quorum Sensing (QS) systems of regulation were identified: Phz/R and CsaI/R. Genes phzI and csaI were cloned and sequenced. Cells of strain 449 synthesize at least three types of AHL: N-butanoyl-L-homoserine lactone (C4-AHL), N-hexanoyl-L-homoserine lactone (C6-AHL), and N-(3-oxo-hexanoyl)-L-homoserine lactone (30C6-AHL). Transposon mutagenesis was used to generate mutants of strain 449 deficient in synthesis of phenazines, which carried inactivated phzA and phzB genes of the phenazine operon and gene phzO. Mutations phzA ? and phzB ? caused a drastic reduction in the antagonistic activity of bacteria toward phytopathogenic fungi. Both mutants lost the ability to protect cucumber and leguminous plants against phytopathogenic fungi Rhizoctonia solani and Sclerotinia sclerotiorum. These results suggest a significant role of phenazines in the antagonistic activity of P. chlororaphis 449.  相似文献   

19.
Novel lipophilic gold(I) complexes containing 1,3,4-oxadiazol-2-thione or 1,3-thiazolidine-2-thione derivatives were synthesized and characterized by IR, high resolution mass spectrometry, and 1H, 13C 31P NMR. The cytotoxicity of the compounds was evaluated considering cisplatin and/or auranofin as reference in different tumor cell lines: colon cancer (CT26WT), metastatic skin melanoma (B16F10), breast adenocarcinoma (MCF-7), cervical carcinoma (HeLa), glioblastoma (M059 J). Normal human lung fibroblasts (GM07492-A) and kidney normal cell (BHK-21) were also evaluated. The gold(I) complexes were more active than their respective free ligands and cisplatin. Furthermore, antibacterial activity was evaluated against Gram-positive bacteria Staphylococcus aureus ATCC 25213, Staphylococcus epidermidis ATCC 12228 and Gram-negative bacteria Escherichia coli ATCC 11229 and Pseudomonas aeruginosa ATCC 27853 and expressed as the minimum inhibitory concentration (MIC). The complexes exhibited lower MIC values when compared to the ligands and chloramphenicol against Gram-positive bacteria and Gram-negative bacteria. Escherichia coli was sensitive one to the action of gold(I) complexes.  相似文献   

20.
Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose oxidase (MtbDprE1) acts in concert with decaprenylphosphoryl-β-d-ribose 2-epimerase (MtbDprE2) and catalyzes the epimerization of DPR into DPA. DPA is the sole precursor for synthesis of arabinogalactan and lipoarabinomannan in the mycobacterial cell wall. MtbDprE1 is a unique antimalarial drug target and many covalent and non-covalent inhibitors against MtbDprE1 have been studied for their antituberculosis activities. In the current study, we have purified MtbDprE1 enzyme and synthesized six sulfur-rich 2-mercaptobenzothiazole and 1, 2, 3-triazole conjugated ligands and performed binding analysis with MtbDprE1. All ligands have shown competitive binding, as observed for other covalently and noncovalently bound MtbDprE1 inhibitors. Molecular docking analysis of six ligands with MtbDprE1 shows that they occupy the substrate binding pocket of MtbDprE1 and are stabilized by hydrogen bonds and van der Waals interactions. Our study shows that sulfur-rich 2-mercaptobenzothiazole ligands act as specific inhibitors against MtbDprE1 and could be used as antituberculosis agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号